PAPER TITLE

Do Graph Neural Networks Build Fair User Models?

Assessing Disparate Impact and Mistreatment in **Behavioural User Profiling**

FIRST AUTHOR

Erasmo Purificato erasmo.purificato@ovgu.de

Different user profiling paradigms in Graph Neural Network models affect fairness results

CO-AUTHOR CO-AUTHOR Ludovico Boratto **Ernesto W. De Luca**

Fairness metrics adopted

Statistical parity

 $\Delta_{SP} = |P(\hat{y} = 1 | s = 0) - P(\hat{y} = 1 | s = 1)|$

Motivation

- ML models are trained on
 - historical data and prone to learn biases;
- **GNNs** can even **amplify** that lacksquarediscrimination due to the topology of graph structures;
- Only a **few publications** to ulletevaluate fairness on GNNs and none of them consider user profiling tasks.

Contributions

- Performed two **user profiling** lacksquaretasks on real-world datasets by using the two most performing **GNNs** in this context;
- Assessed **disparate impact** and disparate mistreatment with four fairness metrics;

- **Equal opportunity** lacksquare
 - $\Delta_{EO} = |P(\hat{y} = 1 | y = 1, s = 0) P(\hat{y} = 1 | y = 1, s = 1)|$
- Overall accuracy equality
 - $\Delta_{OAE} = |P(\hat{y} = 0 | y = 0, s = 0) + P(\hat{y} = 1 | y = 1, s = 0) 0$ $P(\hat{y} = 0 | y = 0, s = 1) - P(\hat{y} = 1 | y = 1, s = 1)$
- Treatment equality

$$\Delta_{TE} = \left| \frac{P(\hat{y} = 1 | y = 0, s = 0)}{P(\hat{y} = 0 | y = 1, s = 0)} - \frac{P(\hat{y} = 1 | y = 0, s = 1)}{P(\hat{y} = 0 | y = 1, s = 1)} \right|$$

Experimental results

Dataset	Label	Sensitive attribute	Model	Fairness scores			
				Δ_{SP}	Δ_{EO}	Δ_{OAE}	Δ_{TE}
Alibaba	gender	bin-age	CatGCN	0.046	0.147	0.175	0.068
			RHGN	0.018	0.133	0.148	0.017
JD	gender	bin-age	CatGCN	0.033	0.050	0.062	0.150
			RHGN	0.009	0.041	0.054	0.019

Correlated the different **user** profiling paradigms with the fairness metrics scores.

	Variations in fairness scores						
Dataset	Δ_{SP}	Δ_{EO}	Δ_{OAE}	Δ_{TE}			
Alibaba	0.028	0.014	0.027	0.051			
JD	0.024	0.009	0.008	0.131			

Observation 2. Even though RHGN demonstrates to be a fairer model than CatGCN, a debiasing process is equally needed for both GNNs.

GNN models analysed

- **CatGCN** [1]: Graph Convolutional Network (GCN) model for categorical features;
- **RHGN** [2]: Relation-aware Heterogeneous Graph Network.

Observation 1. The ability of RHGN to represent users through multiple interaction modelling gains better values in terms of fairness than a model only relying on binary associations between users and items, as CatGCN.

Observation 3. In scenarios where the correctness of a decision on the target label w.r.t. the sensitive attributes is not well defined, or where there is a high cost for misclassified instances, a complete fairness assessment should always take into account disparate mistreatment evaluation.

[1] W. Chen et al. CatGCN: Graph Convolutional Networks with Categorical Node Features. IEEE Trans. on Knowledge and Data Engineering (2021). [2] Q. Yan et al. Relation-aware Heterogeneous Graph for User Profiling. Proc. of the 30th Int. Conf. on Information & Knowledge Management (CIKM'21).

