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Abstract
User modeling is a key topic in many applications, mainly social networks and infor-
mation retrieval systems. To assess the effectiveness of a user modeling approach, 
its capability to classify personal characteristics (e.g., the gender, age, or consump-
tion grade of the users) is evaluated. Due to the fact that some of the attributes to 
predict are multiclass (e.g., age usually encompasses multiple ranges), assessing 
fairness in user modeling becomes a challenge since most of the related metrics 
work with binary attributes. As a workaround, the original multiclass attributes are 
usually binarized to meet standard fairness metrics definitions where both the tar-
get class and sensitive attribute (such as gender or age) are binary. However, this 
alters the original conditions, and fairness is evaluated on classes that differ from 
those used in the classification. In this article, we extend the definitions of four exist-
ing fairness metrics (related to disparate impact and disparate mistreatment) from 
binary to multiclass scenarios, considering different settings where either the target 
class or the sensitive attribute includes more than two groups. Our work endeavors 
to bridge the gap between formal definitions and real use cases in bias detection. 
The results of the experiments, conducted on four real-world datasets by leveraging 
two state-of-the-art graph neural network-based models for user modeling, show that 
the proposed generalization of fairness metrics can lead to a more effective and fine-
grained comprehension of disadvantaged sensitive groups and, in some cases, to a 
better analysis of machine learning models originally deemed to be fair. The source 
code and the preprocessed datasets are available at the following link: https:// github. 
com/ erasm opurif/ toward- respo nsible- fairn ess- analy sis.
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1 Introduction

Living in the current digital era, the interaction with artificial intelligence (AI) 
systems has become, consciously or not, an integral part of everyone’s life. In 
particular, among the most widespread and used tools, information retrieval (IR) 
systems and recommender systems (RSs) deal with providing relevant informa-
tion to the end-users, according to their information needs, personality traits, and 
context, in an effective and efficient manner. In a scenario where the interplay 
with such systems produces a massive amount of personal data on a daily basis, 
the given need of deducting individuals’ interests, characteristics, and behaviors 
is met by user modeling (in literature, used interchangeably with user profil-
ing) techniques  (Eke et  al., 2019), which primarily aim to build a faithful user 
representation (i.e., a user model)  (Purificato et  al., 2024), starting from gener-
ated data. The initial explicit profiling approaches mostly take into account data 
derived from online surveys or forms and are mainly based on static user charac-
teristics (Poo et al., 2003). Due to the familiar distrust and concern about provid-
ing personal information in a direct way by people, implicit strategies are usu-
ally considered in modern user modeling approaches. These techniques are also 
referred to as behavioral user profiling or user behavior modeling  (Purificato 
et al., 2024). In the existing literature, the effectiveness and the performance of 
user modeling methods are commonly evaluated by assessing the related machine 
learning (ML) or deep learning (DL) model’s accuracy in classifying a specific 
attribute (Chen et al., 2019) (e.g. a user’s consumption level for an e-commerce 
platform). Recently, as automated decision-making systems have become ubiqui-
tous in all areas, there has been an increasing realization that the development of 
such models and their results should adhere to a set of ethical principles (Euro-
pean-Commission, 2019). This has led to a push for research on topics such as 
transparency  (Wang et  al., 2019), privacy  (Purificato et  al., 2021), sustainabil-
ity  (Nilashi et  al., 2019), and social equity  (Gómez et  al., 2021). With regard 
to the latter aspect, algorithmic fairness (Kleinberg et al., 2018; Mitchell et al., 
2021) has received significant attention in both academic research and industry 
projects, mainly due to the increased awareness of the potential risks that unfair 
AI systems could pose to certain social groups. On the one hand, several studies 
have been carried out to investigate the possible sources of unfairness in auto-
mated systems (Loveland et al., 2022; Pessach & Shmueli, 2020). These sources 
are typically classified into two primary categories: (1) biased data, and (2) algo-
rithms that are susceptible to the biases already inside the training datasets. On 
the other hand, a significant amount of procedures has been delivered to detect 
and mitigate bias in ML and DL  (Barocas et  al., 2019; Caton & Haas, 2020; 
Verma & Rubin, 2018), especially in user-related scenarios  (Purificato et  al., 
2023), IR systems (Ekstrand et al., 2022; Gao & Shah, 2019; Ramos & Boratto, 
2020) and RSs  (Leonhardt et  al., 2018; Ramos et  al., 2020). Over the last few 
years, numerous fairness metrics have been defined in the literature  (Barocas & 
Selbst, 2016; Berk et al., 2021; Dwork et al., 2012; Feldman et al., 2015; Hardt 
et al., 2016; Zafar et al., 2017), each with a unique focus on a particular aspect 
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of what could be deemed as “fair”. Even though a universal connotation of the 
concept of fairness has not been defined yet, as illustrated by Chierichetti et al. 
(2019), the majority of the metrics that prioritize classification parity (meaning 
that predictive performance scores, i.e., true positive, true negative, false positive 
and false negative rates, should be equal across groups defined by the selected 
sensitive attributes) share a common feature, that is identifying and mitigating 
bias and inequity in binary problems. The reasons why this practice is wide-
spread lie in two motivations that stand out above the others, as described by 
Caton and Haas (2020): (1) many applications involving ML models are origi-
nally binary (e.g. hiring vs. not hiring, granting vs. not granting a loan); (2) quan-
tifying fairness on a binary dependent variable is mathematically more suitable. 
Although these two grounds are technically unexceptionable, what we want to 
deepen and analyze in this work concerns the implications that the application of 
such binary metrics may have in the context of user modeling, especially when 
applied in real-world scenarios, from an ethical and responsible perspective. Our 
arguments align with a similar criticism moved by Barocas et al. (2019): “Most 
proposed fairness interventions start by assuming such a (binary) categorization. 
But when building real systems, enforcing rigid categories of people can be ethi-
cally questionable.”.

In this article, we aim to propose novel fairness metrics for a responsible evalua-
tion in real and multi-valued contexts after analyzing different controversial aspects 
of binary fairness assessment in user modeling models and discussing the related 
issues from an ethical point of view. The term “responsible” refers, in this case, to 
the principles of Responsible AI (Dignum, 2019), which emphasizes accountability 
and transparency in the development and deployment of AI systems, often corre-
lated with the concept of Human-Centered AI (Shneiderman, 2022).

In particular, we highlight the cases reported below:

• Fairness metrics are usually applied in user modeling scenarios where the clas-
sification techniques consider both the target class (e.g., consumption grade for 
e-commerce, salary) and the sensitive attribute (e.g., gender, age, race) as binary, 
often unnaturally.

• When evaluating a model’s ability to produce fair results, it is commonly 
assessed based on the absolute difference between the scores of the two sensitive 
groups under consideration, and this can be perilous for both a system and user 
perspective. Adopting this approach, it is not feasible to identify disadvantaged 
groups for every possible combination of model, dataset, and fairness metrics. 
Consequently, it is not possible to implement targeted interventions to mitigate 
these issues in a real-world setting.

• In situations where there is not a clear binary separation within an actual attrib-
ute distribution, arranging a target class and/or a sensitive group into a binary 
representation by revising the initial data conditions might produce an imprecise 
assessment of a model’s fairness.

From our point of view, there are two significant reasons why making fairness 
assessments of the actual distribution of classes and groups is paramount. On the 
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one hand, if user modeling is less effective for specific groups, they would inevi-
tably receive less effective services (e.g., ads or recommendations). On the other 
hand, arranging different classes and groups into a binary representation can pro-
duce an inaccurate appraisal of models’ fairness by even altering the original data 
conditions.

As the main contribution of the presented article, we extend the definition of four 
fairness metrics related to the concepts of disparate impact (Barocas & Selbst, 2016; 
Wan et  al., 2021) and disparate mistreatment  (Zafar et  al., 2017), from binary to 
multi-class and multi-group scenarios.

Our work aims to bridge the gap between formal definitions and real use cases in 
bias detection by responding to the following research questions:

• RQ1: To what extent can multigroup fairness metrics impact a model’s fairness 
evaluation with respect to the related binary metrics?

• RQ2: To what extent can multiclass and multigroup fairness metrics improve 
bias detection and future mitigation in real-world cases?

In the specific domain of behavioral user modeling, a recently published work (Purif-
icato et al., 2022) presented an accurate assessment of fairness in binary scenarios 
employing effective Graph Neural Network (GNN)-based architectures in the 
field. This work is the first of its kind in the literature and reveals that different user 
modeling paradigms in GNNs have an impact on fairness results.

GNNs  (Hamilton et  al., 2017; Kipf & Welling, 2017; Veličković et  al., 2017; 
Zhang et al., 2019) are currently considered as the state-of-the-art technologies for 
graph data, which constitutes one of the most suitable structure for modeling user 
behaviors, where nodes and edges depict, respectively, users and interactions among 
them. Besides user modeling  (Chen et  al., 2023, 2019; Rahimi et  al., 2018; Yan 
et al., 2021), GNNs have been proven to be successful in several domains, such as 
IR (Cui et al., 2022), RSs (He et al., 2020; Ying et al., 2018) and natural language 
processing (Yao et al., 2019).

Given the aforementioned motivation, to address the challenges posed by the 
research questions, we also focus on graph neural network-based models for behav-
ioral (i.e., implicit) user modeling as the case study of the presented work.

To provide a concrete example, in our experimental settings, we consider an input 
graph either heterogeneous (i.e., composed of different kinds of nodes, such as items 
and product) or homogeneous (i.e., composed of nodes of the same kind, such as 
all users in a social network). The node attributes constitute the user characteristics, 
where one attribute is selected as the target class for the classification predictions 
(i.e., the user modeling task), and a second attribute, specifically a personal trait, is 
chosen as the sensitive attribute for fairness assessment (e.g., gender or age). The 
graph’s nodes are linked by connections that depend on the specific dataset (e.g., a 
“buy” relationship in an e-commerce or “follow” relationship in a social network).

By leveraging two of the most-performing state-of-the-art GNNs for user pro-
filing tasks (i.e., CatGCN  (Chen et al., 2023), and RHGN  (Yan et al., 2021), the 
same used in the pioneering work in binary scenarios by Purificato et al. (2022)), we 
perform a beyond-accuracy analysis considering three settings of target classes and 
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sensitive attribute groups: (1) binary class and binary group; (2) binary class and 
multi-group; (3) multi-class and multi-group. We decided to keep out of our analy-
sis the fourth possible combination, namely multi-class and binary group, because 
our primary focus is on the multiplicity of sensitive attributes, and that situation 
has already been investigated (Denis et al., 2021). The experiments are conducted 
on four real-world datasets (i.e., Alibaba, JD, Pokec, and NBA). The analysis of 
the results shows that the proposed generalization of fairness metrics to multi-class 
and multi-group cases can lead to a more effective and fine-grained comprehension 
of disadvantaged sensitive groups and a better assessment of ML and DL models 
(specifically GNNs in our work) improperly deemed as fair. Although this article’s 
experiments focus on user modeling, it is worth noticing that, given the nature of 
the problem, the approach and resulting insights are not limited to this scenario. We 
envision these extensions being used to assess fairness in numerous ML tasks.

Our contributions can be summarized as follows:

• After reviewing the existing literature about user modeling on graph data 
(Sect. 2.1) and algorithmic fairness (Sect. 2.2), we provide a preliminary over-
view of the adopted (binary) fairness metrics (Sect.  3.1) and GNN-based user 
modeling models (Sect. 3.2) and datasets (Sect. 3.3).

• Based on these foundations, we discuss the implications of applying binary fair-
ness metrics for user modeling tasks under an ethical and human-centered per-
spective (Sect. 4), starting from the analysis of the fairness assessment of GNN-
based models for user modeling in a binary scenario published by Purificato 
et al. (2022).

• After setting the stage with the preliminary analysis discussed in the previous 
points, in the core part of this article, we extend classification fairness metrics 
definitions to cover scenarios in which both the target classes and the sensitive 
attributes are multiclass (Sect. 5).

• For the first time in the literature, we perform a comprehensive analysis to assess 
the effects of adopting the proposed generalized metrics over their binary ver-
sion and evaluate them on four real-world datasets to assess (un)fairness in both 
binary and multiclass/multigroup settings (Sect. 6).

• We provide observations from the lessons learned and show that a binarization 
of the attributes can create the false perception that a user modeling approach is 
fair towards the users it models (Sect. 6.2). However, unfairness treatments can 
be uncovered when assessing fairness under the same conditions in which the 
classification was performed.

• We conclude the article by drawing potential future research directions for the 
addressed topic (Sect. 7).

2  Related Work

This section presents some relevant research work related to our context of inter-
est. Because of our scenario’s complexity and heterogeneity, we separately discuss 
the literature about user modeling, considering graph structures and GNN-based 
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models, and algorithmic fairness, with a specific focus on papers that introduced 
multi-class approaches, procedures or metrics.

2.1  User Modeling

The topic of user modeling on graph data was deeply investigated for the first time 
by Li et al. (2012), who leveraged a heterogeneous graph built upon two interaction 
types, namely “following” and “tweeting”, to infer users’ location. Progressively, the 
scene has been taken by GNN-based models, such as the work proposed by Rahimi 
et al. (2018) and Chen et al. (2019). In the former, users’ location is detected through 
a geolocation model based on graph convolutional networks (GCNs) exploiting 
text and network information. The latter presented a user-representation learn-
ing approach with a heterogeneous graph attention network (HGAT), taking into 
account the graph structure and the attention mechanism to discern the importance 
of each node’s neighbor. The most recent and promising models in this field were 
presented recently, and they are the two GNNs analyzed in our paper. A GCN-based 
model showing the advantages of boosting the node representation before executing 
the user profiling task has been proposed by Chen et al. (2023). Yan et al. (2021) 
presented a heterogeneous graph network (HEN) instead of intending to improve the 
model’s performance by exploiting multiple types of relations and entities for user 
profiling.

As briefly discussed in the previous section, the current common practice in 
literature is to rank user modeling models and approaches based entirely on their 
capabilities to provide accurate predictions of a specific individual’s characteristics. 
The aspect of bias detection has been poorly investigated for GNN models so far, 
with only a few works published in the area (e.g., Dai and Wang (2021); Dong et al. 
(2021)), and most of them mainly focusing on novel debiasing methods rather than 
analyzing potential fairness metrics limitations.

2.2  Algorithmic Fairness

In recent years, bias and fairness in ML have become the focus of growing atten-
tion. While the benefits of algorithmic decision-making can be compelling for large 
organizations and academic research, there is a potential for the output of these 
algorithms to be unfair (Mehrabi et al., 2021). If unfairness does occur, it can have 
significant perceptual and legal implications for organizations that opt to rely on 
machines to make important decisions (Caton & Haas, 2020). Therefore, it is essen-
tial to establish quantitative measures for bias and fairness in machine learning. By 
“bias”, we mean that an ML model exhibits a preference for one characterization 
over another. In other words, the model has a lower error rate for one class than 
another. In particular, in this paper, we refer to group fairness, which is primarily 
focused on the outcomes of privileged and unprivileged groups  (Binns, 2020). A 
group that characterizes an instance from the training data is a protected feature. In 
the broadest sense, group fairness separates a population into groups defined by pro-
tected attributes and aims to achieve equity across these groups. However, regardless 
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of the specific notion of fairness adopted, there exists an evident gap in the existing 
literature between the strategies and methods for binary and multi-class scenarios, 
as already described in Sect. 1. Only a few articles have been published in the last 
couple of years tackling this topic.

Blakeney et  al. (2022) proposed two novel metrics, i.e. Combined Error Vari-
ance (CEV) and Symmetric Distance Error (SDE), to quantitatively assess the 
biases of each correspondent class in the comparison between two different models. 
CEV measures the inclination of a deep neural network to drop performance on one 
class in favor of others, while SDE computes the differences among the classes to 
be selected more or less frequently depending on the numerousness of their training 
examples.

Putzel and Lee (2022) took into account the problem of transforming the outcome 
of a black-box classifier by expanding the “post-processing” approach proposed by 
Hardt et al. (2016) to produce adjusted fair predictions for the analyzed model.

Denis et al. (2021) extended the known definition of demographic parity (Feld-
man et  al., 2015) to the multi-class classification context for exact and approxi-
mate fairness cases and also provided optimal solutions for the classifier under both 
conditions.

Alghamdi et  al. (2022) focus on creating fair probabilistic classifiers for multi-
class classification tasks. The proposed approach involves “projecting” a pre-trained 
classifier, which may be biased, onto the set of models that fulfill the target group 
fairness criteria. The resulting projected model is determined by post-processing the 
pre-trained classifier’s outputs with a multiplicative factor. Moreover, the authors 
introduced an iterative algorithm that can be parallelized to calculate the projected 
classifier and provide guarantees for both sample complexity and convergence.

The main limitation of these (and other existing) works that we aim to overcome 
in the presented paper is the lack of an in-depth analysis of the effect of the applica-
tion of binary fairness metrics in real-world scenarios, with particular reference to 
user modeling. Indeed, in most cases, novel proposed procedures and methods have 
the goal of only solving “mathematically” the issue of binary categorization for bias 
detection and mitigation.

3  Preliminaries

In this section, we first illustrate the definition of the standard binary fairness metrics 
(Sect. 3.1), which constitute the basis of our novel extended metrics. Then, we pro-
vide an overview of the GNN-based models (Sect. 3.2) and the datasets (Sect. 3.3) 
considered in our case study.

3.1  Standard Fairness Metrics Definition

As discussed in Sect. 1, several fairness metrics have been proposed in the litera-
ture in the last decade (Barocas & Selbst, 2016; Berk et al., 2021; Dwork et al., 
2012; Feldman et  al., 2015; Hardt et  al., 2016; Zafar et  al., 2017). Our article 
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considers the two families of fairness metrics covering the perspectives of dispa-
rate impact and disparate mistreatment.

Disparate impact, also known as adverse impact, occurs when people are 
apparently treated similarly by a procedure or a system, but they are subject to 
indirect and often unintentional discrimination (Hajian et al., 2016). This usually 
occurs when certain groups are systematically discriminated against, even though 
no sensitive attribute is considered when making the predictions. Hence, dispari-
ties arise due to some proxy attributes (Wan et al., 2021). This family of metrics 
was chosen since the GNNs considered by our reference models only aggregate 
information from neighbors. In turn, no sensitive attribute is explicitly consid-
ered during the classification process. Disparate impact can be employed under 
scenarios in which no explicit link between the predicted label and the sensitive 
attribute exists, meaning that it is hard to define the validity of a decision for a 
group member based on the historical training data (Zafar et al., 2017).

Disparate mistreatment is related to scenarios in which it becomes challeng-
ing to evaluate the correctness of a prediction for users associated with a specific 
sensitive attribute value. Rather than considering the corrected predictions, it is 
assessed by measuring the misclassification rates for groups of users character-
ized by different values of a sensitive attribute (Zafar et al., 2017). Finally, assess-
ing significance in contexts where the misclassification costs depend on the group 
affected by the error is particularly useful.

Our evaluation of the disparate impact of the analyzed models will be done 
through metrics assessing perspectives such as statistical parity, equal opportu-
nity, and overall accuracy equality. We select the treatment equality metric for 
disparate mistreatment. For each of these metrics, we consider y ∈ {0, 1} as the 
binary target label and ŷ ∈ {0, 1} as the prediction of the user modeling model 
f ∶ x → y . The sensitive attribute is denoted with s ∈ {0, 1} . In the metrics’ 
descriptions, we also exploit the following notation, which relates to classifica-
tion properties: TP, FP, TN, and FN, denoting true positives, false positives, true 
negatives and false negatives, respectively.

Statistical parity (SP) (or demographic parity)  (Dwork et  al., 2012; Feld-
man et al., 2015) defines fairness as an equal probability for each group of being 
assigned to the positive class, i.e. predictions independent are from the sensitive 
attributes.

Equal opportunity (EO) (Hardt et al., 2016) requires the probability of a subject in 
a positive class to be classified with the positive outcome to be equal for each group, 
i.e. TP should be the same across groups.

Overall accuracy equality (OAE) (Berk et al., 2021) defines fairness as the equal 
probability of a subject from either the positive or the negative class to be assigned 
to its respective class, i.e. each group should have the same prediction accuracy.

(1)P(ŷ = 1 | s = 0) = P(ŷ = 1 | s = 1)

(2)P(ŷ = 1 | y = 1, s = 0) = P(ŷ = 1 | y = 1, s = 1)
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Treatment equality (TE) (Berk et al., 2021) requires the ratio of errors made by the 
classifier to be equal across different groups, i.e. each group should have the same 
FN and FP ratio.

3.2  Analysed GNN Models

The foundation of our fairness assessment is represented by two recent GNN-based 
models, which currently represent the most effective advances in user profiling, i.e. 
CatGCN and RHGN.

The first, CatGCN (Chen et al., 2023), is a graph convolutional network (GCN) 
model that performs graph learning on categorical node features. Instead of consid-
ering the original node representation, the model integrates two additional forms of 
interaction into the learning process. The first of them, a local interaction, is multi-
plication-based and performed on each pair of node features. The second is an addi-
tion-based interaction, in which the model builds on an artificial feature graph. The 
introduction of these forms of interaction before the graph convolution can improve 
the effectiveness of user modeling.

The second approach, named Relation-aware Heterogeneous Graph Network 
(RHGN)  (Yan et  al., 2021), models different forms of interactions happening 
between entities on a heterogeneous graph. Node importance and meta-relation 
significance on the graph are learned via transformer-like multi-relation attention, 
while information from multiple sources is collected via a heterogeneous graph 
propagation network. A comparison with other GNN-based models on user mod-
eling tasks shows the approach’s effectiveness.

3.3  Datasets

In this section, we describe the four datasets used in the presented work: Alibaba, 
JD, Pokec, and NBA.

Alibaba dataset1 consists of click-through rate data related to the ads of Alibaba’s 
Taobao platform, provided by the Alibaba Group’s Tianchi Lab in 2018. Both Cat-
GCN and RHGN models performed their original evaluation with this dataset. The 
heterogeneous graph generated as the models’ input is composed of two types of 
nodes, users and items (i.e., products). A user node includes attributes related to 
gender, age, consumption grade, student status, and region of living. An item node 
has only one attribute, thus the category to which the product belongs. User and 

(3)
P(ŷ = 0 | y = 0, s = 0) + P(ŷ = 1 | y = 1, s = 0) =

= P(ŷ = 0 | y = 0, s = 1) + P(ŷ = 1 | y = 1, s = 1)

(4)
P(ŷ = 1 | y = 0, s = 0)

P(ŷ = 0 | y = 1, s = 0)
=

P(ŷ = 1 | y = 0, s = 1)

P(ŷ = 0 | y = 1, s = 1)

1 https:// tianc hi. aliyun. com/ datas et/ dataD etail? dataId= 56

https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
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item nodes are connected with the click relationship, and the edges are not weighted. 
Following the experimental setup of CatGCN, we select the product types as the 
categorical features associated with the users for the same model. Thus, only the 
items clicked by at least two users have been taken into account to create the co-click 
relationship adopted as the model’s local interaction. In order to make the study 
coherent between the analyzed GNNs, the same filtering procedure has been applied 
to RHGN before creating the heterogeneous graph. As the target class for the user 
modeling task and the sensitive attribute, we choose the user’s consumption grade 
(denoted as buy) and age, respectively. Considering the binary scenario, we generate 
the bin-buy variable from the original 3-level buy attribute by merging mid ( y = 1 ) 
and high ( y = 2 ) levels, and the bin-age variable from the 7-level age attribute by 
merging labels as follows: sA = {s0, s1, s2, s3} and sB = {s4, s5, s6} . In the Alibaba 
dataset, the age range of each class is not specified and is only characterized by a 
label. Both binarisations have been made to define a clear separation between the 
two groups.

JD dataset2 consists of 100  000 users randomly sampled from JD.com, one of 
the largest e-commerce sites in the world, and collected by Chen et  al. (2019). It 
includes users’ profiles, information about items (i.e., products), click and order logs 
ranging from February 2018 to February 2019, and has been used in the original 
RHGN paper for its experimental evaluation. User profile (i.e., gender and age) and 
product data (i.e., category information, brand, and price) are leveraged for generat-
ing the user and item nodes for the heterogeneous input graph. Given the massive 
size of this dataset, and since the scope of the presented work is not the evaluation 
of models’ performance on user modeling tasks, we make a sample of the dataset 
taking the 15% of the items and consider only one relationship type, i.e., click, as the 
graph edges, to create comparable experimental setups. As for the Alibaba dataset, 
a co-click relationship is used as CatGCN’s local interaction. To make the different 
experiments as consistent as possible, we generate a variable named expense level 
and use it as the profiling task target class. We exploit the existing purchase relation-
ship between user and item nodes, and the count of bought items and each single 
price to compute a user’s total expense. After removing duplicate values, we divided 
the list of expenses into four quartiles to extract the boundaries for creating a 4-level 
variable. The binary variable bin-exp has been constructed by isolating the low level 
( y = 0 ) and merging the others, following the practice adopted on the Alibaba data-
set. The 5-level age variable is the sensitive attribute, and in this case, we binarised 
it (bin-age) by considering users under and over 35 years old. The resulting binary 
sensitive attribute groups are composed as follows: sA = {s0, s1} and sB = {s2, s3, s4}

.
Pokec is the most popular social network in Slovakia, which is very similar to 

Facebook and X (former Twitter). This dataset3 has already been used in other 
relevant works, such as in  Dai and Wang (2021). It contains anonymized data of 
the whole social network in 2012 and has been published by Takac and Zabovsky 

2 https:// github. com/ guyul ongcs/ IJCAI 2019_ HGAT
3 https:// snap. stanf ord. edu/ data/ soc- pokec. html

https://github.com/guyulongcs/IJCAI2019_HGAT
https://snap.stanford.edu/data/soc-pokec.html
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(2012). The nodes of the input graph are homogeneous and represent users of the 
platform, having specific attributes (e.g., gender, age, hobbies, interests, and work-
ing field). The edges are the connections between the users, represented by a fol-
low relationship, and they are not weighted. For the user modeling task, we employ 
the working field as the target class. The categories of this attribute are identified 
solely by labels and lack detailed documentation. For this reason, the binarization 
process, which generates the bin-work-field variable, is performed by isolating the 
most numerous class ( y = 0 ) to establish a distinct division between the two groups, 
ensuring clarity in group delineation. The age is used as the sensitive attribute. For 
this dataset, each node includes the exact age of the users. To generate a meaning-
ful and almost balanced set of levels, we consider the following ranges to create five 
groups: under 18, 18–23, 24–28, 28–35, and over 35. Given that it is a social net-
work, to create the bin-age attribute for the binary scenario, we decided to consider 
the users under and over 18 years old. Specifically, the groups created are: sA = {s0} 
and sB = {s1, s2, s3, s4}.

NBA dataset4 is an extension of a Kaggle dataset,5 used by Dai and Wang (2021) 
and containing the info about around 400 NBA basketball players. The perfor-
mance statistics of players in the 2016–2017 season and other various information 
(e.g., nationality, age, and salary) are provided, and constitute the attributes of our 

Table 1  Characteristics of the 
used datasets

Dataset Users Items Edges Features

Alibaba 166,958 64,553 427,464 2820
JD 38,322 49,634 315,970 2056
Pokec 13,504 – 882,765 70
NBA 403 – 16,570 178

Table 2  Distribution of the original target classes and sensitive attribute groups

Dataset Label % Class/Group

0 1 2 3 4 5 6

Alibaba buy 32.48% 60.30% 7.22% – – – –
age 21.74% 1.61% 17.56% 23.72% 30.83% 4.53% 0.01%

JD expense 40.99% 15.68% 23.97% 19.36% – – –
age 23.59% 7.53% 50.17% 16.95% 1.76% – –

Pokec work-field 47.67% 21.10% 13.12% 12.41% 5.70% – –
age 38.85% 30.10% 13.64% 9.98% 7.43% – –

NBA salary 22.33% 38.21% 39.45% – – – –
age 39.95% 37.37% 22.58% – – – –

4 https:// github. com/ Enyan Dai/ FairG NN/ tree/ main/ datas et/ NBA
5 https:// www. kaggle. com/ noahg ift/ social- power- nba

https://github.com/EnyanDai/FairGNN/tree/main/dataset/NBA
https://www.kaggle.com/noahgift/social-power-nba
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homogeneous input graph nodes. The graph edges, not weighted, are represented by 
the relations between players on a social network (i.e., Twitter, retrieved from the offi-
cial crawling API by Dai and Wang (2021)). For this dataset, the three-level salary 
attribute is adopted as the target class of the performed user modeling task, which is 
binarized by isolating the top-level class ( y = 2 ) for the binary scenario (bin-salary). 
As the sensitive attribute, we employed the age attribute. From the individual values, 
we first created three ranges considering meaningful groups for basketball players 
(i.e., under 25, 25–30, and over 30), and then we merged the two highest groups to 
create the bin-age variable with the following split: sA = {s0} and sB = {s1, s2}.

Table 1 shows information about the four datasets, where features refers to the 
dimension of CatGCN’s input categorical feature array. Tables  2 and 3 display, 
respectively, the distribution within the datasets of the target classes and sensitive 
attribute groups in the original and binarized scenarios.

In our study, we binarized the target classes and sensitive attributes to allow for 
a comprehensive analysis of class distributions. This approach enabled us to exam-
ine both balanced and unbalanced distributions of positive and negative classes. By 
implementing this binarization strategy, we ensured that our analysis could robustly 
capture the effects of varying class distributions on the outcomes, thereby enhancing 
the reliability and generalizability of our findings.

4  Ethical Implications of Fairness Analysis in a Binary Scenario

The first fairness assessment of GNN-based models for user modeling shown in the 
literature has been recently published by Purificato et al. (2022), which constitutes the 
starting point of the contributions presented in our article. In their work, the authors 
analyzed two state-of-the-art GNNs (i.e. CatGCN and RHGN, described in Sect. 3.2) 
by evaluating their performance in two binary user modeling scenarios (exploiting 
Alibaba and JD datasets, illustrated in Sect. 3.3) and assessing disparate impact and 
disparate mistreatment values (Sect. 3.1) for both models in both user modeling tasks.

In particular, for the mentioned assessment, they quantitatively evaluate the dis-
parate impact and disparate mistreatment of the analyzed models by operationaliz-
ing the metrics defined by Eqs. (1)–(4) as follows:

Table 3  Distribution of the 
binarized target classes and 
sensitive attribute groups

Dataset Label % Class/Group

0 1

Alibaba bin-buy 32.48% 67.52%
bin-age 64.63% 35.37%

JD bin-exp 40.99% 59.01%
bin-age 67.12% 32.88%

Pokec bin-work-field 47.67% 52.33%
bin-age 38.85% 61.15%

NBA bin-salary 60.55% 39.45%
bin-age 60.05% 39.95%
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Through an extensive set of experiments, the authors derived several observations 
about the analyzed models, correlating their different user modeling paradigms with 
the fairness metrics scores to create a baseline for future assessments: 

1. The ability of RHGN to represent users through multiple interaction modeling 
gains better values in terms of fairness than a model only relying on binary asso-
ciations between users and items, as CatGCN, which also amplifies discrimination 
by modeling users’ local interactions.

2. Even though RHGN demonstrates to be a fairer model than CatGCN, a debiasing 
process is equally needed in order to exploit the user models produced by both 
GNNs while deeming them as fair.

3. In scenarios where the correctness of a decision on the target label w.r.t. the sensi-
tive attributes are not well defined or where there is a high cost for misclassified 
instances, a complete fairness assessment should always take into account disparate 
mistreatment evaluation since disparate impact results could be misleading for these 
specific contexts.

As discussed in Sect. 1, in the algorithmic fairness literature, many researchers disa-
gree with the choices of binarising target class and using absolute value scores for 
computing fairness. To further demonstrate the limitations of these practices and 
set the path to our multiclass and multigroup metrics proposal, which constitutes 
the core contribution of this article, we conducted two types of experiments based 
on the computation made by Purificato et al. (2022).6 In the first one, we focused 

(5)ΔSP = |P(ŷ = 1 | s = 0) − P(ŷ = 1 | s = 1)|,

(6)ΔEO = |P(ŷ = 1 | y = 1, s = 0) − P(ŷ = 1 | y = 1, s = 1)|,

(7)
ΔOAE = |P(ŷ = 0 | y = 0, s = 0) + P(ŷ = 1 | y = 1, s = 0)−

− P(ŷ = 0 | y = 0, s = 1) − P(ŷ = 1 | y = 1, s = 1)|,

(8)ΔTE =
||||
P(ŷ = 1 | y = 0, s = 0)

P(ŷ = 0 | y = 1, s = 0)
−

P(ŷ = 1 | y = 0, s = 1)

P(ŷ = 0 | y = 1, s = 1)

||||

Table 4  Fairness metrics 
computation without absolute 
value for Purificato et al. (2022)

Dataset Model Δ∗
SP

Δ∗
EO

Alibaba CatGCN − 0.045 ±0.021 0.139 ±0.074
RHGN 0.019 ±0.012 − 0.133 ±0.086

JD CatGCN 0.033 ±0.013 − 0.052 ±0.016
RHGN 0.009 ±0.007 − 0.042 ±0.017

6 Source code of Purificato et al. (2022) at https:// github. com/ erasm opurif/ do_ gnns_ build_ fair_ models.

https://github.com/erasmopurif/do_gnns_build_fair_models
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on the use of the absolute difference of the computed fairness metrics. The setting 
is straightforward: we removed the absolute value from the fairness computation of 
the analyzed models and executed the same experiments presented in the original 
papers with the default parameters. Table 4 displays the results of the computation 
of Δ∗

SP
 and Δ∗

EO
 (i.e., ΔSP and ΔEO without absolute value), showing the evident alter-

nation of positive and negative scores. The resulting trend means that the unfairness 
(regardless of the specific value) might be directed towards one sensitive group or 
the other for a given combination of model and dataset.

Ethical consideration 1 Considering the absolute difference score in the fairness 
analysis can be hazardous. In particular, from both a system and user perspec-
tive, with this practice, we cannot clearly figure out the disadvantaged groups for 
every specific combination of model, dataset, and fairness metrics, and thus una-
ble to make in place just tailored interventions to mitigate the issue in a real-world 
scenario.

Concerning the issue related to fairness analysis in binary scenarios, we con-
ducted experiments to understand the influence of binarization on fairness scores. 
Not being the core of this article, we discuss below only the results for a specific 
combination of model and dataset. The derived implication can be easily extended 
to the other cases.

In particular, we focused on RHGN model and Alibaba dataset from Purificato 
et  al. (2022) work, also adopting the original binary classification task but with 
the following setting for the sensitive attribute. On the one hand, we considered 
its original multiclass distribution (seven groups, named as s0-s6 ) and calculated 
every single statistical parity (SP) probability; on the other hand, we binarized 
the attribute, as done in the original paper, and again computed the single prob-
abilities for the binary groups. The resulting binary sensitive attribute groups are 
composed as follows: sA = {s0, s1, s2, s3} , sB = {s4, s5, s6} . The results are shown in 
Table 5.

Table 5  Statistical parity 
scores for binary and multiclass 
sensitive attribute groups for 
Purificato et al. (2022) (RHGN 
model and Alibaba dataset)

Binary group SP Multiclass 
group

SP

s
A

  0.887 ± 
0.015  

  s0     0.81 ± 0.02  
  s1     0.91 ± 0.02  
  s2     0.91 ± 0.01  
  s3     0.92 ± 0.01  

s
B

  0.797 ± 
0.055  

  s4     0.89 ± 0.01  
  s5     0.72 ± 0.03  
  s6     0.78 ± 0.07  
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The observation derived from these results is that binarization can lead to mis-
leading evaluation of a specific subgroup. In this specific experiment, the group s0 
should be treated as a disadvantaged group if considered in the fine-grained assess-
ment, but it would be treated as an advantaged group when included in the binary 
group sA . The opposite applies to group s4.

Ethical consideration 2 In many of the current works about fairness evaluation of 
automated systems, the sensitive attributes (that are usually natively multiclass) are 
made binary to meet the standard fairness metrics definitions. From our point of 
view, there are two crucial reasons why it is essential to evaluate fairness by examin-
ing the actual distribution of sensitive groups. Firstly, if the system at hand is not as 
effective for certain groups, they will end up receiving less effective services, such 
as targeted advertisements or recommendations. Secondly, reducing the different 
classes and groups into a binary representation can lead to an incorrect evaluation of 
the fairness of models, potentially distorting the original data conditions.

5  Multiclass and Multigroup Fairness Metrics

In the following section, we describe the context, the motivations, and the steps that 
led to the definition of multigroup fairness metrics first and then finally to the gen-
eral multiclass and multigroup metrics.

As reported in Sect. 2, one of the primary reasons behind the standardized adop-
tion of binary fairness metrics is that many ethically questionable applications 
involving AI systems are binary by definition (e.g., hiring vs. not hiring). The main 
issue with this motivation is that it cannot be true when considering sensitive attrib-
utes. This is basically due to the common understanding that almost no human traits 
should be viewed as binary, neither gender nor, even more so, age.

For multigroup fairness metrics, we take the same class variables as the binary 
case (Sect.  3.1), that is y ∈ {0, 1} as the binary target label and ŷ ∈ {0, 1} as the 
model prediction. Let N be the number of sensitive attribute groups s. We define the 
following equations, where the resulting score should be equal across the groups to 
satisfy the specific fairness metrics:

• Multigroup statistical parity

• Multigroup equal opportunity

• Multigroup overall accuracy equality

(9)P(ŷ = 1 | s = n),∀n ∈ {0, ...,N − 1}

(10)P(ŷ = 1 | y = 1, s = n),∀n ∈ {0, ...,N − 1}

(11)P(ŷ = 0 | y = 0, s = n) + P(ŷ = 1 | y = 1, s = n),∀n ∈ {0, ...,N − 1}
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• Multigroup treatment equality

The second rationale in favor of the binary fairness metrics definition reported by 
Caton and Haas (2020) relates to the mathematical ease of quantifying a binary vari-
able instead of a multivalue one. Following the above multigroup definitions, we 
propose a further extension to multiclass and multigroup fairness metrics without 
adding any mathematical complexity, with the goal of proving that an apparently 
simple generalization can lead to a much better and deeper fairness analysis. Let 
M and N be the number of classes y,ŷ and groups s, respectively. The score of each 
metric displayed below should be equal across every class and group:

• Multiclass and multigroup statistical parity

• Multiclass and multigroup equal opportunity

• Multiclass and multigroup overall accuracy equality

• Multiclass and multigroup treatment equality

It is worth noticing that when considering the multiclass and multigroup scenario, 
the definition of equal opportunity in Eq. (14) would also apply to the extension of 
the equalized odds metric (Hardt et al., 2016) in the same context.

6  Experimental Fairness Assessment

In this section, we present the empirical study conducted to assess the effects of 
the proposed multiclass and multigroup fairness metrics compared to the standard 
binary metrics to answer the following research questions, already introduced in 
Sect. 1:

• RQ1: To what extent can multigroup fairness metrics impact a model’s fairness 
evaluation with respect to the related binary metrics?

• RQ2: To what extent can multiclass and multigroup fairness metrics improve 
bias detection and future mitigation in real-world cases?

(12)
P(ŷ = 1 | y = 0, s = n)

P(ŷ = 0 | y = 1, s = n)
,∀n ∈ {0, ...,N − 1}

(13)P(ŷ = m | s = n),∀m ∈ {0, ...,M − 1} ∧ ∀n ∈ {0, ...,N − 1}

(14)P(ŷ = m | y = m, s = n),∀m ∈ {0, ...,M − 1} ∧ ∀n ∈ {0, ...,N − 1}

(15)
M−1∑

m=0

P(ŷ = m | y = m, s = n),∀n ∈ {0, ...,N − 1}

(16)
P(ŷ = m | y ≠ m, s = n)

P(ŷ ≠ m | y = m, s = n)
,∀m ∈ {0, ...,M − 1} ∧ ∀n ∈ {0, ...,N − 1}
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Below, we describe the experiments carried out to investigate the research questions 
set and the chosen parameters. The experimental results conclude the section.

6.1  Experimental setting

To enable the analyzed GNN-based models to perform properly on the user mod-
eling tasks with the provided dataset and the selected target classes and sensitive 
attributes, we execute a hyper-parameters selection as described in the following. 
For CatGCN, the learning rate is searched in {0.001, 0.01, 0.1}, the L2 regulariza-
tion coefficient and the dropout ratio are tuned among {1e-5, 1e-4} and {0.1, 0.3, 
0.5, 0.7}, respectively, and the aggregation parameter � is searched within {0.1, 0.3, 
0.5, 0.7, 0.9}. For RHGN, the learning rate and the L2 regularization coefficient are 
searched in {0.01, 0.1} and {1e-5, 1e-4}, respectively; the hidden dimension of the 
two layers of the entity-level aggregation network is searched in {32, 64}, while the 
number of heads in multi-head attention is tuned among {1, 2}. All other parameters 
are set according to the original papers. After the grid search, we ran the experi-
ments 40 times for each fairness metric. We execute the illustrated operations on a 
GPU Nvidia Quadro RTX 8000 48GB.

6.2  Experimental results

In this section, we discuss the results and findings of the empirical studies designed 
for each research question. Before diving into the fairness assessments, the experi-
ment results of the user modeling tasks, for each combination of dataset, model, 
and setting (binary or multiclass) are shown in Table 6, reporting the performance 
scores in the form of accuracy and F1-score. Displaying this table aims to amplify 
the understanding of the chosen models’ effectiveness and enhance the relevance of 
the presented fairness metrics in all their variations.

Table 6  Experiment results of the user modeling tasks, for each combination of dataset, model, and set-
ting (binary or multiclass)

Dataset Model Performance (binary) Performance (multiclass)

Accuracy F1-score Accuracy F1-score

Alibaba CatGCN 0.776 ±0.021 0.718 ±0.005 0.535 ±0.031 0.501 ±0.012
RHGN 0.803 ±0.006 0.711 ±0.016 0.618 ±0.002 0.587 ±0.018

JD CatGCN 0.732 ±0.008 0.706 ±0.006 0.502 ±0.002 0.498 ±0.013
RHGN 0.738 ±0.004 0.702 ±0.007 0.575 ±0.010 0.525 ±0.017

Pokec CatGCN 0.808 ±0.002 0.797 ±0.002 0.445 ±0.004 0.398 ±0.006
RHGN 0.799 ±0.022 0.779 ±0.013 0.455 ±0.004 0.404 ±0.003

NBA CatGCN 0.743 ±0.074 0.709 ±0.052 0.593 ±0.067 0.541 ±0.072
RHGN 0.768 ±0.043 0.721 ±0.071 0.581 ±0.051 0.527 ±0.035
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6.2.1  Comparing multigroup and binary fairness evaluation (RQ1)

This experiment analyses the potential benefit of adopting multigroup metrics over 
binary metrics for a proper fairness assessment. In this scenario, the target class is 
binary, and we evaluate the differences between analyzing binary or multigroup sen-
sitive attributes. For each of the two models, CatGCN and RHGN, we first run the 
user modeling task (i.e., classification of bin-buy class for the Alibaba dataset, bin-
exp for the JD dataset, bin-work-field for the Pokec dataset, and bin-salary for the 
NBA dataset), then we computed the scores of the binary fairness metrics, defined 
by Eqs. (1)–(4), and multigroup fairness metrics, defined by Eqs. (9)–(12).

To fortify the credibility of our findings and ensure that the differences observed 
are not products of random chance, we employed a Mann–Whitney-Wilcoxon7 (Mann 
& Whitney, 1947; Wilcoxon, 1992) test on every couple of groups. We implemented 

Table 7  Qualitative analysis of the comparative results between binary and multigroup scenarios leading 
to the considerations for RQ1. The multigroup column includes the differences from the binary case

Dataset Metric Model /setting (Ref. Figures)

CatGCN RHGN

Binary Multigroup Binary Multigroup

Alibaba SP s
A
 adv. s0.A dis.,

s4.B , s6.B adv.
(1a-2a) s

A
 adv. s0.A dis.,

s4.B adv.
(9a-10a)

EO Fair s0.A , s5.B dis. (1b-2b) s
A
 adv. s0.A dis.,

s4.B adv.
(9b-10b)

OAE Fair s1.A , s2.A adv. (1c-2c) Fair s3.A , s4.B dis., s5.B , s6.B adv. (9c-10c)
TE s

A
 adv. s0.A dis. (1d-2d) s

B
 adv. s4.B dis. (9d-10d)

JD SP Fair s3.B , s4.B dis. (3a-4a) s
B
 adv. s3.B dis. (11a-12a)

EO Fair s3.B dis. (3b-4b) Fair s0.A dis. (11b-12b)
OAE Fair s2.B , s3.B dis. (3c-4c) Fair s2.B adv. (11c-12c)
TE s

B
 adv. s2.B dis. (3d-4d) Fair s0.A adv., s1.A , s2.B dis. (11d-12d)

Pokec SP Fair s3.B , s4.B adv. (5a-6a) Fair s2.B dis. (13a-14a)
EO Fair s3.B adv. (5b-6b) Fair no diff. (13b-14b)
OAE s

B
 adv. s1.B , s2.B,

s4.B dis.
(5c-6c) Fair s3.B adv. (13c-14c)

TE Fair s3.B , s4.B dis. (5d-6d) s
A
 adv. s1.B , s2.B adv. (13d-14d)

NBA SP s
A
 adv. s2.B adv. (7a-8a) s

A
 adv. s2.B adv. (15a-16a)

EO s
A
 adv. s2.B adv. (7b-8b) s

A
 adv. s2.B adv. (15a-16a)

OAE s
A
 adv. no diff. (7c-8c) s

B
 adv. s1.B dis. (15a-16a)

TE s
A
 adv. s1.B adv. (7d-8d) s

A
 adv. No diff. (15a-16a)

7 The Mann–Whitney-Wilcoxon test is a non-parametric test used to assess whether two independent 
samples come from the same distribution. Unlike the t-test, it does not require the assumption of normal 
distribution, making it a more flexible and reliable choice for our data’s distribution characteristics.
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the statistical test with 1000 repetitions, ensuring the stability and replicability of 
our results. Moreover, we applied the Bonferroni correction8  (Haynes, 2013), a 

Table 8  Description of the cases derived from the assessment of the comparative results between binary 
and multigroup scenarios

# Binary scenario Multigroup scenario

1 Binarized group advantaged Related fine-grained original groups (all or some) disadvantaged
2 Binarized group advantaged Opposite (i.e., belonging to the other binarized group) fine-

grained original groups (all or some) advantaged
3 Fair result Some fine-grained groups particularly disadvantaged (or advan-

taged to the detriment of others)

Fig. 1  Fairness assessment of CatGCN model on Alibaba dataset in the binary class (positive output) 
and binary group scenario

Fig. 2  Fairness assessment of CatGCN model on Alibaba dataset in the binary class (positive output) 
and multigroup scenario

8 The Bonferroni correction adjusts the significance thresholds to account for the increased chance of 
observing significant results purely by chance when multiple tests are performed simultaneously. By 
dividing the desired significance level by the number of comparisons made, the Bonferroni correction 
safeguards against the risk of false positives, thus ensuring that the differences we report are indeed sta-
tistically significant and not a result of random variation or the sheer number of tests conducted.
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conservative statistical approach designed to counteract the problem of multiple 
comparisons.

Table 7 displays a comprehensive qualitative analysis of the comparative results 
between binary and multigroup scenarios. In particular, for each combination of 
dataset, metric, model, and setting (binary or multigroup), we reported, for the mul-
tigroup case, the differences from the related binary case.

The experimental results for each combination of the earlier-mentioned model, 
dataset, and scenario are shown in Figs. 1–16. In the presented charts, each pair of 
box plots is annotated with a statistical symbol, reflecting the statistical significance 
of the difference between the two groups under comparison based on the p-value, a 
measure of the strength of the evidence against the null hypothesis. Specifically:

• A notation of [ns] indicates a non-significant difference, suggesting the evidence 
is not strong enough to reject the null hypothesis for the difference between the 
groups, implying that the observed difference could be due to random chance 
rather than systematic unfairness.

• Symbols ranging from [ ∗ ] to [ ∗∗∗∗ ] denote increasing levels of statistical signifi-
cance, associated with decreasing p-values. A statistically significant difference 

Fig. 3  Fairness assessment of CatGCN model on JD dataset in the binary class (positive output) and 
binary group scenario

Fig. 4  Fairness assessment of CatGCN model on JD dataset in the binary class (positive output) and 
multigroup scenario
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implies that the likelihood of the observed data occurring under the null hypoth-
esis is low. This significant difference is indicative of real, consistent disparities 
between the groups, and in the context of our study, it points toward the presence 
of unfairness. The specific levels of significance are:

   [*]: Significant difference with a p-value less than 0.05 but greater than 0.01.
      [**]: More significant difference with a p-value less than 0.01 but greater 
than 0.001.
   [***]: Highly significant difference with a p-value less than 0.001 but greater 
than 0.0001.
   [****]: Extremely significant difference with a p-value less than 0.0001.

From the assessment, we identified three specific crucial cases from the analysis of 
the experiment results in this context, which are shown and described in Table 8.

To give some practical evidence of what exactly these results can tell 
us, we can consider the experiments involving CatGCN model on JD dataset 
(i.e., expense level as the target class for classification and age as the sensitive 

Fig. 5  Fairness assessment of CatGCN model on Pokec dataset in the binary class (positive output) and 
binary group scenario

Fig. 6  Fairness assessment of CatGCN model on Pokec dataset in the binary class (positive output) and 
multigroup scenario
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attribute) and related to Figs. 3a–4a and Figs. 3d–4d. In the former, under sta-
tistical parity constraints, the binary age groups are fair, and no mitigation is 
needed; with a fine-grained multigroup analysis, instead, two age subgroups are 
exposed as disadvantaged, and an intervention can be planned to address inequi-
ties. In the latter instance, given the treatment equality scores, the results show a 

Fig. 7  Fairness assessment of CatGCN model on NBA dataset in the binary class (positive output) and 
binary group scenario

Fig. 8  Fairness assessment of CatGCN model on NBA dataset in the binary class (positive output) and 
multigroup scenario

Fig. 9  Fairness assessment of RHGN model on Alibaba dataset in the binary class (positive output) and 
binary group scenario
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binary age group as advantaged, but the detailed multigroup assessment reveals 
that within that group, there is a specific subgroup that is disadvantaged; in this 
case, applying a bias mitigation procedure in the binary scenario would even 
worsen the discrimination toward this age subgroup.

Fig. 10  Fairness assessment of RHGN model on Alibaba dataset in the binary class (positive output) 
and multigroup scenario

Fig. 11  Fairness assessment of RHGN model on JD dataset in the binary class (positive output) and 
binary group scenario
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Fig. 12  Fairness assessment of RHGN model on JD dataset in the binary class (positive output) and 
multigroup scenario

Fig. 13  Fairness assessment of RHGN model on Pokec dataset in the binary class (positive output) and 
binary group scenario

Fig. 14  Fairness assessment of RHGN model on Pokec dataset in the binary class (positive output) and 
multigroup scenario



1 3

Toward a Responsible Fairness Analysis: From Binary to… Page 25 of 34 33

Observation 1 

A fine-grained fairness analysis, leveraging multigroup metrics, allows the discovery of actual dis-
crimination among sensitive groups hidden by a binary assessment, either in situations where biases 
do not seem to exist or where a disadvantaged group is wrongly deemed as advantaged.

Fig. 15  Fairness assessment of RHGN model on NBA dataset in the binary class (positive output) and 
binary group scenario

Fig. 16  Fairness assessment of RHGN model on NBA dataset in the binary class (positive output) and 
multigroup scenario

Fig. 17  Fairness assessment of CatGCN model on Alibaba dataset in the binary class (both outputs) 
and multigroup scenario
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Fig. 18  Fairness assessment of CatGCN model on Alibaba dataset in the multiclass and multigroup sce-
nario

Fig. 19  Fairness assessment of CatGCN model on JD dataset in the binary class (both outputs) and mul-
tigroup scenario

Fig. 20  Fairness assessment of CatGCN model on JD dataset in the multiclass and multigroup scenario

Fig. 21  Fairness assessment of CatGCN model on Pokec dataset in the binary class (both outputs) and 
multigroup scenario

Fig. 22  Fairness assessment of CatGCN model on Pokec dataset in the multiclass and multigroup sce-
nario
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Fig. 23  Fairness assessment of CatGCN model on NBA dataset in the binary class (both outputs) and 
multigroup scenario

Fig. 24  Fairness assessment of CatGCN model on NBA dataset in the multiclass and multigroup sce-
nario

Fig. 25  Fairness assessment of RHGN model on Alibaba dataset in the binary class (both outputs) and 
multigroup scenario

Fig. 26  Fairness assessment of RHGN model on Alibaba dataset in the multiclass and multigroup sce-
nario

Fig. 27  Fairness assessment of RHGN model on JD dataset in the binary class (both outputs) and multi-
group scenario
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Fig. 28  Fairness assessment of RHGN model on JD dataset in the multiclass and multigroup scenario

Fig. 29  Fairness assessment of RHGN model on Pokec dataset in the binary class (both outputs) and 
multigroup scenario

Fig. 30  Fairness assessment of RHGN model on Pokec dataset in the multiclass and multigroup sce-
nario

Fig. 31  Fairness assessment of RHGN model on NBA dataset in the binary class (both outputs) and 
multigroup scenario

Fig. 32  Fairness assessment of RHGN model on NBA dataset in the multiclass and multigroup scenario
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6.2.2  Assessing Multiclass and Multigroup Fairness Metrics in Real‑World Cases 
(RQ2)

Most of the standard (binary) fairness metrics rely on the selection of a positive class 
for their computation. As already discussed in this article, when a binarization of an 
originally multiclass target variable is applied, like in Dai and Wang (2021), such a 
selection is made almost randomly because neither of the two classes can be really 
considered the positive one. In this experiment, our goal is to examine how a multi-
class and multigroup fairness assessment should always be preferred to have a clear 
picture of all possible discrimination created by the models. We perform the same 

Table 9  Qualitative analysis of 
the comparative results between 
multigroup and multiclass 
scenarios leading to the 
considerations for RQ2

The symbols refer to the derived cases described in Table 10

Dataset Metric Model

CatGCN Ref. Figures RHGN Ref. Figures

Alibaba SP † , ⋄ (17a, 18a) ∗ (25a, 26a)
EO ⋄ (17b, 18b) ∗ (25b, 26b)
TE ∗ (17c, 18c) ∗ (25c, 26c)

JD SP ∗ (19a, 20a) † , ⋄ (27a, 28a)
EO ∗ (19b, 20b) † , ⋄ (27b, 28b)
TE ∗ (19c, 20c) ⋄ (27c, 28c)

Pokec SP ∗,⩕ (21a, 22a) ∗ (29a, 30a)
EO ∗,⩕ (21b, 22b) ∗ (29b, 30b)
TE ⊙ (21c, 22c) ∗,⩕ (29c, 30c)

NBA SP † (23a, 24a) ☆ (31a, 32a)
EO ⋄ (23b, 24b) † , ⋄ (31b, 32b)
TE † (23c, 24c) – (31c, 32c)

Table 10  Description of the cases derived from the assessment of the comparative results between multi-
group and multiclass scenarios

# Symbol Multigroup scenario Multigroup and multiclass scenario

1 † Binarized class advantaged All related fine-grained classes significantly 
disadvantaged

2 ⋄ Fair result All fine-grained classes, belonging to the same 
binarized class, disadvantaged

3 ∗ Binarized class advantaged Only one or a few of the related fine-grained 
classes significantly disadvantaged

4 ⊙ Fair result Only one or a few of the related fine-grained 
classes, belonging to the same binarized class, 
disadvantaged

5 ☆ Unfair result Fair result
6 ⩕ Binarized class disadvan-

taged
Even greater unfairness against that class (and 

related fine-grained classes)
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profiling task described in the previous section and compute the metrics defined in 
Eqs. (13)-(16).

In Figs. 17–32, the results for each combination of model, dataset, and metrics are 
displayed. Concerning the metrics, the multiclass and multigroup OAE (Eq.  (15)) 
are not taken into account in this evaluation because the results would have been 
identical to those in the previous experiments, due to its definition, which sums up 
the probabilities of the target classes. For the sake of clarity, we only show the mean 
values without other stats in the result charts. As for the previous evaluation, how 
the single classes are binarized is illustrated in Sect. 3.3.

Similarly to the binary-multigroup scenario (Sect. 6.2.1), in Table 9, we provided 
an effective way to visualize the outcomes of the qualitative analysis of the compara-
tive results between multigroup and multiclass scenarios. For each combination of 
dataset, metric, and model, the associated findings are represented within the table 
as symbols, each of them referring to one of the six specific cases we derived from 
the analysis of the experiment results in this context, and illustrated in Table 10.

In order to demonstrate the practical implications of these findings, we can exam-
ine the experiments conducted with the CatGCN model on the Alibaba dataset (i.e., 
consumption grade as the target class for classification and age as sensitive attrib-
ute) and corresponding to Figs. 17a and 18a. Computing the fairness scores with the 
statistical parity metric, we face two different situations. Given that in this evalu-
ation the sensitive attribute is always considered as multi-valued, for a particular 
age group, we have, on one side, the mid and high consumption levels deemed as 
advantaged when taken together in the binary evaluation, while disadvantaged when 
individually considered for the multiclass assessment; on the other side, for another 
age group, the binary results are fair, but the detailed analysis reveals all that the mid 
and high consumption levels are again disadvantaged when considered separately.

Observation 2 In contexts where there is not an actual “positive” class, the exploita-
tion of multiclass and multigroup fairness metrics to evaluate both binary and mul-
ticlass scenarios provides the actual picture of models’ discrimination, providing a 
clear understanding of which are the discriminated groups across all the classes and 
what is the fairness difference between them in order to design a proper bias mitiga-
tion strategy.

7  Conclusion and Future Work

In this article, we presented a novel responsible and ethical approach for algorith-
mic fairness assessment, including analyzing real-world scenarios, introducing mul-
tigroup and multiclass metrics, and evaluating them in real-world user modeling 
tasks leveraging state-of-the-art GNN-based models. Starting from ethical implica-
tions derived from the common practice of assessing fairness in binary scenarios 
and, in particular, from a recent fairness analysis of GNNs designed for user mod-
eling (Purificato et al., 2022), we extended the definition of four different existing 
fairness binary metrics related to disparate treatment and disparate mistreatment 
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notion (i.e. statistical parity, equal opportunity, overall accuracy equality, and treat-
ment equality) to a multigroup and multiclass scenario, as the principal contribu-
tion of this article. The presented evaluation considered user modeling tasks on four 
real-world datasets and the exploitation of two state-of-the-art GNN-based models, 
namely CatGCN and RHGN. In this study, we aimed to evaluate the impact of utiliz-
ing a finer level of granularity in assessing fairness within multiple sub-populations 
on the detection of undetected or incorrectly assumed discrimination across distinct 
minority groups. Our findings demonstrate that employing multigroup measures in 
evaluating fairness facilitates the identification of unfair treatment among vulnerable 
populations despite initial impressions of equity or instances of mistaken advanta-
geous outcomes for certain underprivileged cohorts. Ultimately, our results high-
light the importance of considering nuanced perspectives when examining bias in 
order to ensure the most accurate representation of systemic issues affecting mar-
ginalized communities. Moreover, when dealing with circumstances involving no 
true beneficial outcome category, our research uses multiparty and multiplex metrics 
to appraise binary and multiclass situations. This approach presents a comprehen-
sive view of any model’s prejudice, delineating the affected groups throughout the 
various classes while measuring their diversity gaps. With these findings, informed 
strategies can then be developed to alleviate and eliminate unwarranted biases 
within such complex systems. We also acknowledged the necessity of a focused 
investigation into the relationships between model-dataset combinations and fair-
ness outcomes. In future studies, along with exploring additional models not limited 
to GNNs, we will also extend our research to unravel these interactions, particu-
larly examining the impact of dataset characteristics and the construction of binary 
groups/classes on fairness scores. This will involve a rigorous analysis to understand 
the nuances and potential correlations, further enriching our comprehension of fair-
ness in automated decision-making systems.
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