
Otto-von-Guericke University Magdeburg

Faculty of Computer Science
Digital Engineering

Master Thesis

GNN xEval
Design and Implementation of a framework for Graph

Neural Network Explainers Evaluation

Author:

Affan Ahmed

July 23, 2023

Advisers:

Supervisor Supervisor
Prof. Dr.-Ing. Ernesto William De Luca Erasmo Purificato

Human Centered Artificial Intelligence Human Centered Artificial Intelligence
Faculty of Computer Science Faculty of Computer Science

Otto-von-Guericke University Otto-von-Guericke University
Universitätsplatz 2, G29-415 Universitätsplatz 2, G29-001
39106 Magdeburg, Germany 39106 Magdeburg, Germany

Ahmed, Affan:
GNN xEval
Design and Implementation of a framework for Graph Neural Network Ex-
plainers Evaluation
Master Thesis, Otto-von-Guericke University
Magdeburg, 2023.

Contents

Abstract

1 Introduction
1.1 Overview . 1
1.2 Importance . 2

1.2.1 Importance of Graph Neural Networks 2
1.2.2 Importance of explainability 3

1.3 Motivation . 4
1.4 Aim of the thesis . 5
1.5 Structure of the thesis . 6

2 Background
2.1 Classification of Explainers . 7
2.2 Current Research . 9
2.3 Preliminaries . 11

2.3.1 The simple Graph structure . 11
2.3.2 Node and edges . 12
2.3.3 Directed and Undirected graphs 13
2.3.4 Homogeneous and Heterogeneous graphs 14
2.3.5 Graphs in Neural Networks . 16
2.3.6 Some definitions about explanations: 18

3 Adopted Methodologies
3.1 Graph Datasets . 21

3.1.1 Homogeneous datasets . 21
3.1.2 Heterogeneous datasets . 22
3.1.3 Synthetic datasets . 23

3.2 Graph Neural Network tasks . 23
3.3 Graph Neural Network Architectures 27
3.4 Explainers . 31
3.5 Explanation evaluation metrics . 34

4 Implementation and Evaluation
4.1 Configuration . 37

4.1.1 System Configuration . 37

iii

iv CONTENTS

4.1.2 Languages, Tools, and Frameworks 38
4.1.3 The experiment settings . 39

4.2 Implementation . 41
4.2.1 User Interface . 41
4.2.2 The Process . 43
4.2.3 The Implementation . 44

4.3 Results and discussion . 46
4.3.1 The Application . 46
4.3.2 Characterisation Score . 47
4.3.3 Unfaithfulness . 48

5 Conclusions and Future Work
5.1 Conclusions . 49
5.2 Limitations . 50
5.3 Future Work . 51

A Detailed Results

B Abbreviations and Notations

C List of Figures

D List of Tables

E Bibliography

CONTENTS v

Abstract

Graph Neural Networks have developed a sharp interest in researchers because
of their applications and simplicity. Due to the black box of nature model dur-
ing training in Neural Networks and Graph Neural Networks, it is important to
interpret and explain them.

The explanation can provide answers to its trustworthiness, transparency, de-
bugging, error analysis, feature importance, ethical issues, and insights into the
model providing an opportunity to improve them. This leads us to the domain of
Explainable AI (XAI). We have ample methods to explain the models. However,
these explainer models are largely available for simple Neural Networks.

With the recent interest in GNN, there is significant interest in its interpretation
and explanation. While some of the models available in Neural Networks can be
modified to work for GNNs, there are several novel approaches for explainability.

Depending on their nature some of the Explainers are model agnostic while
others are simply model specific. As most of this work is available in individual
pieces of code having a mismatching configuration for GPU. Even though a
few libraries are provided however no integrated and complete single and user
friendly platform is provided for the researchers to research and experiment their
research.

I present a unified platform for Graph Neural Network Explainability called "GNN
xEval" that can implement explanations and provide results that can be effectively
compared with the results of different explainers. The application provides a user
friendly interface for the researchers that can create their explainers and use this
interface in different configurations and compare their research with the existing
explainers including benchmarks.

Acknowledgements

• I would like to acknowledge the efforts of my supervisor who has always
facilitated me at every possible step. His friendliness and his ability to
suggest solutions according to the situations, his understanding and ac-
knowledgment of the efforts of the students and other researchers are
admirable.

• Secondly, I would like to acknowledge Advaneo GmbH, who has allowed
me to work as a student for the duration of my thesis.

• Thirdly, I am thankful to everyone who has directly or indirectly supported
my efforts.

• Also, I highlight my friends who have helped even a bit including Hamza
Zaidi who has helped me alongside this thesis having a similar topic of his
thesis.

• And finally and foremost my parents and close relatives who always lend
me unconditional support in every way possible.

vii

1
Introduction

1.1 Overview

Although literature and algorithms such as backpropagation (written in

1970) existed, interest in Machine Learning and Artificial Intelligence in-

creased among researchers in the decade before the turn of the millen-

nium. The past decade has seen a focus on a subset of Machine Learn-

ing called Deep Learning. Deep Learning processes different input data

types, resulting in a variety of applications with unique architectures to

solve each problem. It is more challenging to obtain results than with tra-

ditional Machine Learning methods.

The Graph data structure is a commonly used data structure, like in social

media. Especially the Knowledge Graphs(a type of heterogeneous graph)

are in use for a long time. They are schema-less alternatives to databases.

Infusing the two concepts gives us the Graph Neural Networks. In other

words, we can apply deep Neural Networks to Graph data structures as

inputs and get some desired outputs.

The nature of Neural Networks is that we know the inputs, and get the

desired or undesired outputs, however, we are unaware of the insights of

the model itself. Therefore we have a different domain that can interpret

and explain the insights of the model during the training. This is known as

Explainable Artificial Intelligence.

The concept of explainable artificial intelligence also extends to GNNs. Al-

though some methods of Neural Networks apply to GNNs, in general, due

to the difference in the architecture of the GNNs as compared to Neural

Networks, GNNs have their explainers. Some of which are specific to the

model being considered while others are model agnostic.

1

2 CHAPTER 1. INTRODUCTION

There are several explainers researched and presented and in the case of

GNNs there are no gold standards. Also, an explainer might perform better

on a dataset or some configuration, but it may perform worse than others

on a different dataset. Furthermore, one explainer may be good for a spe-

cific GNN task, however, another may be outperforming it in a different

GNN task. Therefore it is important to know the quality of the explana-

tions.

Thus this research work presents several datasets, GNN tasks, explainers,

and explainer evaluation metrics available in the present literature. It pro-

vides a framework where the researchers can easily test several explainers,

datasets, etc.

1.2 Importance

1.2.1 Importance of Graph Neural Networks

Graph Neural Networks(GNNs) are rapidly evolving and a new domain in

the revolutionary field of Deep Learning. They have importance due to

several reasons:

• Versatility

A lot of different tasks can be performed on GNNs

• Scalability

Millions and billions of nodes and edges can be handled.

• Can handle Graph data structure

• Transductive and Inductive

GNNs can work both transductive and inductively. It can work on

predicting unseen nodes/edges and it can also work on classifying

existing nodes and graphs.

• Local and Global neighborhood

GNNs can gather information in the local and the neighborhood

GNNs are network-based Neural Networks that can be applied in networks

like

1.2. IMPORTANCE 3

• Local Area Networks,

• Drug chemical structures,

• road networks,

• Rail networks,

• Networks of users in Social Media, etc

Where the data is structured in the form of graphs or can be mapped in the

graphical data. GNNs have applications like

• Recommendation Systems,

• Drug Discovery/Invention,

• Text classification, and many more, etc.

1.2.2 Importance of explainability

GNN XAI has had ample research interest since 2019. The working of Neu-

ral Networks usually consists of several layers leading to a large network

of nodes. However, during the training phase, it is hard to interpret the

insights of the model. While one understands what has been inputted and

what is on the output, it is not straightforward to know what is inside the

layers. More recently it has become more important to know the insights,

for example, it is important to know the insights as it might violate Euro-

pean Privacy Laws or General Data Protection Regulations(GDPR). These

insights can make AI more

• trustworthy

• fair

• ethical

• faithful

• efficient

• improvement

4 CHAPTER 1. INTRODUCTION

• compliant with regulations

• responsible AI

1.3 Motivation

The field of Artificial Intelligence is captivating and constantly evolving.

One of its prominent subsets is Machine Learning, which is an expansive

subject that continues to be extensively researched. This dynamic nature

ensures that algorithms are not confined to specific boundaries but rather

evolve rapidly, introducing new and improved approaches.

As time progresses, newer algorithms emerge, often surpassing the perfor-

mance of existing ones or catering to different requirements. This con-

stant drive for innovation keeps the field vibrant and ensures that algo-

rithms remain relevant and adaptable to the ever-changing landscape of

Artificial Intelligence.

Deep Learning which in its entirety itself is a subset of Machine Learning

and Data Mining is a very large subject. Due to interest in Neural Networks,

more subsets have evolved such as Generative AI, diffusion models, Spik-

ing Neural Networks Graph Neural Networks etc. While in the last decade,

a sharp rise in interest in Deep Learning was witnessed, more recently

the research interest in Graph Neural Network which has applications in

chemical compounds like in Drug discovery and knowledge graphs have

gained strength.

I am truly passionate about embracing and conquering challenges. As I

delved deeper into the realm of Artificial Intelligence, what may seem like

a mere buzzword to others transformed into a vast and fascinating field

for those who comprehend its intricacies. The potential applications of

Artificial Intelligence span across numerous domains, further solidifying

my belief in its significance.

Driven by an insatiable curiosity to acquire new knowledge and accom-

plish meaningful milestones, coupled with my profound interest in Neu-

ral Networks, I decided to embark on a research journey and author a

thesis focused on Graph Neural Networks. This endeavor allows me to

explore cutting-edge developments in this field and contribute to its ad-

vancement.

1.4. AIM OF THE THESIS 5

1.4 Aim of the thesis

The underlying problem faced in Neural Networks including Graph Neural

Networks is their interpretability, such that they are black Boxes. The input

and the output are visible, however, what happens inside the process is

hard to reason directly and it is important to interpret and explain them.

Explaining it lets us answer the question marks regarding the fairness,

interpretability, and lack of explainability of the models(they are black

boxes). Since it is important to answer these questions sometimes, this

leads us to another domain called explainable AI (XAI).

Traditionally Machine, Deep Learning, Neural Networks, and Graph Neu-

ral Networks which is training the model and inferring from the trained

model, however explainable AI focuses on what is going on in the layers of

the deep learning and Graph Neural network model.

Some of the questions that arise and this work will try to address include:

1. What are the types of GNN datasets?

2. What are the common GNN datasets?

3. What are the statistics of the datasets?

4. What are the different GNN tasks?

5. What are the GNN models?

6. What are some of the explainers?

7. Is the explanation sufficient?

8. Is the explanation good?

9. Does the explainer work well for most of the problems?

10. What are some of the possible combinations of datasets, explainers,

and metrics?

11. What are the libraries that work for GNN?

6 CHAPTER 1. INTRODUCTION

1.5 Structure of the thesis

1. The first chapter of this is the introduction. It discusses the motiva-

tion and what questions that would be addressed in the manuscript.

2. The Second chapter contains the background. It discusses related

work . And it also provides some preliminaries that show the basics

of GNN and its explainability.

3. The third chapter focuses on the literature review. Some of the ex-

plainers were tried however they had some constrictions and were

not used again or dropped from the experiments described in the

next chapter.

4. The fourth chapter introduces the experimental settings and the

tools that were used. It provides how the experiments were done.

And finally, it provides the results and a discussion.

5. The final chapter gives the conclusion, the limitations that occurred,

and improvements that can be done in the future.

6. In the end all the references are provided in different sections

2
Background

2.1 Classification of Explainers

Relevant and related work is done concerning the GNN explainability of

Graph Neural Networks. Starting with The Taxonomic Survey of GNN ex-

plainability(YUAN et al. (2022)), discusses multiple Research articles for

GNN XAI. It categorizes the methods and provides performance metrics.

Figure 2.1: GNN Explainers classification and examples

There are several GNN Explainers, some of which are based on Neural Net-

works. The paper YUAN et al. (2022) has introduced a type of classification

of explainers according to the approach towards GNN explainability.

7

8 CHAPTER 2. BACKGROUND

• Gradients/ Feature: These explainers are commonly used in texts

and images, they capture the gradients or hidden feature values.

They get the importance scores of the input. The gradient methods

capture the gradient of the predictions with respect to the input us-

ing backpropagation. While feature-based methods map the hidden

features to the input. They use interpolation of the input features

and measure the importance scores. In general the larger the gradi-

ent/ feature the greater the importance.

• Perturbations

These methods check the output variations with respect to different

inputs(Perturbations). In case an output is similar despite the in-

put variation, the important information is retained. Mostly pertur-

bation methods use generate masks(filters) and apply them to data

(like Images). For a given graph different masks are generated for ex-

ample a node masks according to important input features depend-

ing on the task. The masks are then combined with the input graph.

This graph has important information and is then fed to a trained

GNN to evaluate and update the mask generation algorithms.

• Surrogate Methods

The idea is to use a simple and more interpretable model to predict a

more complex model. There is an assumption that the relationships

in the local neighborhood of the surrogate model are less complex

than the original model. The local neighborhood of the input graph

is extracted along with predictions. Then the training of the inter-

pretable model is done and the explanations are considered expla-

nations of the original model.

• Decomposition Methods

Decompose into several terms with importance scores depending

on the set of rules. As the importance scores are layerwise, backprop-

agation is applied repeatedly. In the end, we obtain the layerwise

relevance depending on the importance score of each of the layers.

• Graph Generation Methods

Graph Generation Methods generates Graphs and optimizes the

Graph generation to get accurate predictions. Graph generation

2.2. CURRENT RESEARCH 9

is a reinforcement learning problem, where the generator predicts

where to add an edge to obtaining feedback. Learning has several

rules.

2.2 Current Research

XGNN:

(YUAN et al. (2020)) The paper is classified as Model-based methods(rather

than instance-based) of which the Graph Generation methods with only

example as XGNN. It uses a trained GNN and generates graphs, the pur-

pose of which is to maximize certain predictions by the model. The XGNN

generates graphs using Graph Generator using Reinforcement Learning

technique. The technique uses a trained GNN model to produce predic-

tions. The predictions are maximized by Graph Generator using GCNs.

The Graph Generator decides what Edges can be created next step in a

step-by-step manner for every node. The Graph Generator can be trained

itself using Reinforcement learning. The XGNNs can produce a Graph with

maximum probability with regards to the Ground truth however it may not

be able to produce a graph that is the actual ground truth.

PGMExplainer:

(VU und THAI (2020)) This method can be classified as a Surrogate method.

This is a sample/instance-based method. The method can be summarised

into three parts. The first part is the data generation using perturbation on

the input graph. Variable selection needs to be done for structure Learn-

ing as Complex and large graphs may contain too many variables using

Pairwise dependence tests. The final phase uses BIC scores and the hill

climbing method to explain the graphs.

GCAN:

(LU und LI (2020)) This method targets social media and creates a fake

news detector. The purpose is to detect fake tweets. The explainer can be

used to detect short fake tweets from Twitter. It can also be used in short

text and similar domains like sentiment analysis.

10 CHAPTER 2. BACKGROUND

Backdoor Attack using Explainability:

(XU et al. (2021))This paper discusses the detection of a Backdoor attack

and defense from the attack using explainability. For Explainability, it,

however, used Captum AI (PyTorch-based Neural Interpretation library).

It talks about using explainability creating an importance map from 0 to

1, 1 being hard importance and 0 being low importance, and creating an

edge mask on the important only features. It suggests that the backdoor

will contain more unimportant features and thus detect and eliminate

them.

Explainer for Temporal GNNs:

(HE et al. (2022)) Uses PGM explainer for TGNNS.

GNN-LRP:

(SCHNAKE et al. (2022)) This particular research is classified as the Decom-

position method. The paper discusses using a recursive function(such

that the Higher model is a nesting of the First order expansions) to model

the explanation and using Taylor Series to find the Higher-order expan-

sion(output layer towards input). An attribution scheme called walks is

introduced(GNN prediction on the collection of edges). Moving from the

top layer to the input layer, the First order explanation can be inserted into

every layer and LRP is used here.

GraphFram Explainer:

(AMARA et al. (2022)) The paper discusses metrics of explainability rather

than being an explainer which it argues mostly does not work on real data

but synthetic data so they can have a ground Truth. This means the ac-

curacy metric is not appropriate. It argues some explainers might be bet-

ter but in other data, they might not be good. This method does not tar-

get model-based explainers like XGNN. It targets the Focus of explana-

tion, Mask nature, and mask transformation. It introduces a new mea-

sure called the Characterization score which is derived from +Fidelity and

-Fidelity.

2.3. PRELIMINARIES 11

Self Explainable GNN:

(DAI und WANG (2021)) The paper first evaluates node similarity and local

structure. For this purpose, similarity scores of edges between two nodes

are evaluated with provided Labels. Since nodes with similar labels are

likely to be similar pair, implicit supervision (labels guiding prediction)

is provided for Similarity modeling. This leads us to K nearest Labeled

node for prediction and explanations. Contrastive Learning can further

enhance the explanations.

GraphSVX:

(DUVAL und MALLIAROS (2021)) The paper combines all the classifica-

tions provided by the taxonomic survey to present the explainer. Such

that it uses a decomposition method working on a perturbed dataset. Fur-

ther, it evaluates the Shapley values. It uses GNNexplainer, Pgexplainer,

GraphLime, PGM Explainer, and XGNN. All methods can input a Graph

into the mask generator to create node edge and feature mask. These

masks are fed into a graph generator, which converts them into input

space and feeds them to GNN. The predictions of GNN are used for Mask

Generator, Graph Generator, and explanation generator. The explanation

generator provides an explanation.

ShapeGGen:

(AGARWAL et al. (2023)) ShapeGGen is a data generator to overcome the

synthetic data unreliable ground truth problem. The paper uses eight

GNN explainer. It uses GraphXAI a Python library to implement some

tasks. GraphXai library makes use of the ShapeGGen dataset. It introduces

several metrics. It also discusses fairness related to the ground truth.

2.3 Preliminaries

2.3.1 The simple Graph structure

To gain a solid foundation in Graph Neural Networks (GNNs), it is crucial

to comprehend the fundamental structure of graphs. Graphs are com-

12 CHAPTER 2. BACKGROUND

posed of interconnected nodes, with edges serving as the links between

them. In Figure 2.2 we have 6 nodes(labeled as numbers) with 6 intercon-

nections between them (represented by black lines).

Figure 2.2: A simple Graph

2.3.2 Node and edges

Different literature and formats use different terms. For this reason, some

of the terms are mentioned below for clarity.

For the Nodes, the similar terminologies include:

• Nodes

• Vertices

• Points

• Entities

For the Edges, the similar terminologies are:

• Edges

• Links

• Relationships

2.3. PRELIMINARIES 13

• Connections

• Arcs

• Interconnections

2.3.3 Directed and Undirected graphs

The graphical datasets consist of edges that can be either directed or undi-

rected. In case a graph is directed it means, node ’X’ is related to Node

’Y’ where the edge from ’X’ is pointing towards node ’Y’. In case Node Y is

also related to Node X then another arrow can be pointed in the reverse

direction. Fig 2.3 contain pointed edges is an example of a directed graph.

Figure 2.3: A simple directed graph

(LESKOVEC und KIPF (2021)In the case of undirected, however, the links

are not pointed and that means node X is related to node Y and vice versa

is also true. Figure 2.4 is an undirected graph

14 CHAPTER 2. BACKGROUND

Figure 2.4: A simple undirected graph

2.3.4 Homogeneous and Heterogeneous graphs

A homogeneous graph (or Homogeneous network) where the type of the

nodes and edges is the same. The node and the edge attributes have the

same category. An example of a Homogeneous graph is social media web-

sites.

A graph (homogeneous) is defined by the expression

G(N ,E) (2.1)

• N are the nodes

• E are the edges

Figure 2.5: A Homogeneous Graph

2.3. PRELIMINARIES 15

On the other hand, a Heterogeneous graph (or Heterogeneous Network or

multimodal network) can contain nodes and edges or different categories.

The attributes of nodes and edges consist of different types. An example

of a Heterogeneous Graph is Knowledge Graph Google Card that appears

on Google searches in the browser.

A heterogeneous graph is defined by the equation

G = (V ,E ,R,T) (2.2)

• V are the Vertices

• E are the edges with relation types

• T are the nodes types

• R are the Relation types

Figure 2.6: A Heterogeneous Graph

the fundamental differences between the two graphs included in tab

Table 2.1: Homogeneous graphs vs Heterogeneous graphs

Homogeneous Heterogeneous

type same types of nodes and edges different types of nodes and edges

e r type entities and relationship types are of same kind diverse entities and relationships

e.g. social networks recommendation system

e.g. citation networks knowledge graphs

16 CHAPTER 2. BACKGROUND

2.3.5 Graphs in Neural Networks

Neural Networks cater data in the following:

• Image data or Computer Vision

• Text data or Natural Language Processing

• Audio data

• Structured data

• Times series data

However, when the data is in the form of graph data structure(such as

Knowledge Graphs), the concepts of Neural Networks can be applied.

Such that, the goal of the Neural Network is to find a function F which

maps input nodes to D dimensional vectors (or embeddings), such that

similar nodes are close to each other.

Figure 2.7: The embedding function f

The general tasks in most GNN architectures is as follows

• Aggregation

a function of aggregation is defined e.g. averaging, summing, or Max

• Loss Function

a loss function is defined e.g. cross-entropy

• Train

training is done of a set of nodes in a local neighborhood

2.3. PRELIMINARIES 17

• Generate Embeddings

Finally the embedding for the entire graph is generated

Challenges for GNN

• Arbitrary size and complex structure

• No fixed ordering

• Dynamic

• Heterogenous features

Computation Graph for GNN

In Figure 2.8 given below, an example input graph is given. We assume

that node 2 is the target node.

Figure 2.8: Input Graph with target node as node labelled 2

Figure given below 2.9, is the computation graph for the input graph for

Figure 2.7. The target node is preceded by a Neural Network with inputs

of Node 3, 1, and 4 which are located in the immediate neighborhood of

Node 2(in the input graph). It is followed by another layer of the Neural

Network and the nodes of the input are in the immediate neighborhood of

nodes 3, 1, and 4 in the original input graph.

18 CHAPTER 2. BACKGROUND

Figure 2.9: The computation graph for GNN

2.3.6 Some definitions about explanations:

• Phenomenon:

The ground truth of the dataset is given. The explainer is configured

as ’phenomenon’ such that it explains the model according to the

ground truth node.

• Model (explanation):

The explanation focuses on the output of the GNN model. It can be

handy when the ground truth labels are not included in the dataset.

• Sufficient explanations:

A sufficient explanation is obtained from the model’s initial predic-

tions. There can be multiple sufficient explanations of the model and

different explanations can lead to the same prediction. As discussed

later a negative fidelity close to 0 means explanation is sufficient.

• Necessary explanations:

2.3. PRELIMINARIES 19

Similar to a counterfactual explanation, A necessary explanation

is one in which, if you remove the model from the initial graph, it

changes the model predictions. A positive fidelity close to 1 means

that the explanation is necessary.

3
Adopted Methodologies

3.1 Graph Datasets

There are numerous graph datasets publicly available. The available

datasets can be categorized into distinct types.

3.1.1 Homogeneous datasets

• Karate Club

(ROZEMBERCZKI et al. (2020)) It is an open-source dataset based on a

social network. This dataset can cater to community detection, node

classification, and graph classification tasks

• Tudatasets

(KERSTING et al. (2016) Provided and maintained by the Technical

University of Dortmund. It contains a variety of datasets. Most nota-

bles are

– MUTAG,

arguably the most common benchmark dataset representing

chemical dataset. It is used mainly for classification tasks. The

class labels are mutagen or non-mutagen

– ENZYMES,

another common dataset with nodes representing amino acids.

It has multiple classes. They represent different functional

classes

– PROTEINS,

– COLLAB,

21

22 CHAPTER 3. ADOPTED METHODOLOGIES

– IMDB-BINARY

– REDDIT-BINARY.

• Planetoid

(YANG et al. (2016)) It contains three datasets representing citation

networks. They all contain a single graph and are used for node clas-

sification. They are

– CORA,

– PUBMED,

– CiteSeer

• Mutagenicity

TONG et al. (2016) The dataset contains drug compounds with binary

target class. It is used as a Graph Classification task.

Table 3.1: Statistics for common Homogeneous graph datasets

Name # Graphs # Nodes # Edges # features # classes

KarateClub 1 34 156 34 4
MUTAG 188 17.9 39.6 7 2

ENZYMES 600 32.6 124.3 3 6
PROTEINS 1,113 39.1 145.6 3 2

COLLAB 5,000 74.5 4914.4 0 3
Cora 1 2,708 10,556 1,433 7

CiteSeer 1 3,327 9,104 3,703 6
PubMed 1 19,717 88,648 500 3

3.1.2 Heterogeneous datasets

• Movielens

(HARPER und KONSTAN (2015)) It is a database of 62k movies and

162k user with 25 million ratings. It is used for recommendation. The

GNN task that can be performed is Link prediction.

• DBP15K

(SUN et al. (2017)) The dataset is based on cross-entity linguistic

alignment. The languages Chinese, Japanese, and French are linked

to English.

3.2. GRAPH NEURAL NETWORK TASKS 23

• OGBN-MAG

(HU et al. (2020)) It is an open-source heterogeneous citation net-

work dataset. It can be used in Node classification and link predic-

tion.

• IMDB

(FU et al. (2020)) A heterogeneous dataset for movies from a subset

of the IMDB database. The knowledge graph contains three types of

entities, Movies with 4278 nodes, Actors with 5257 nodes, and direc-

tors with 2081 nodes. The class represents the genre of the movie.

There are three possible classes i.e. Action, comedy, and drama.

3.1.3 Synthetic datasets

• BA2-Motifs

(LUO et al. (2020)) used for graph classification task, the ba2-motifs

contains 1000 graphs. The target class is either house or a 5 node

cycle. Features are initialized as all 1s vector.

• BA-Shapes

(LUO et al. (2020)) A single graph BA based graph synthetic dataset.

Classes are defined according to the position of the node in the graph

such that they are labelled 1,2 and 3 if they are either at top or middle

or bottom of the house motif accordingly. The base of the BA graph

is labelled 0,

• BA-MultiShapes

(AZZOLIN et al. (2023)) The synthetic graph is used for Graph classifi-

cation task. It contains 1000 Babarasi -Albert graph. The class 0 can

contain empty set or a house or a grid or a wheel or the three motifs

together. However class 1 contains the combinations of either house

and grid, or house and wheel or wheel and grid.

3.2 Graph Neural Network tasks

Node classification:

24 CHAPTER 3. ADOPTED METHODOLOGIES

The task at hand involves determining the labels of samples represented as

nodes by examining the labels of their neighboring nodes. In this setting,

the objective is to leverage the labeled nodes to infer the labels of the unla-

beled nodes through the connectivity and relationships within the graph.

By utilizing the graph structure and the labeled nodes as guidance, the aim

is to generalize the labels to the entire graph, making predictions for the

unlabeled nodes based on the information propagated from their labeled

neighbors.

Z? = f (h?) (3.1)

• where Z? is the predicted label of the target node

• and h? represents the updated node to be predicted

• f represents the classifier function

Figure 3.1: Node classification

Link prediction:

In this context, the algorithm’s primary objective is to unravel the relation-

ships between entities within graphs and accurately predict the presence

or absence of connections between them. This capability holds significant

importance in various domains, particularly within social networks. One

such application lies in the knowledge graphs.

Z16 = f (h1,h6,e16) (3.2)

3.2. GRAPH NEURAL NETWORK TASKS 25

• where Z16 represent the score of the predicted link from node 1 to

node 6. A higher score means more probability of the existence of a

link

• h1 and h1 represent the updated node representation of node 1 and

node 6 respectively

• f represents the link prediction function

• e16 represents the feature representation edge between nodes 1 and

6

Figure 3.2: Link Prediction

Graph classification:

In this particular task, the entire graph is divided into labels rather than

individual nodes or edges. The labels are assigned according to the struc-

tures. It is trained. The targets are accordingly to the application of the

graphs such as social media and recommendation system.

ZG = f (
∑

hi) (3.3)

• where ZG represents the label over the entire graph link

• hi represent the learned node representation node Ni

•
∑

hi represents the summation of node representation in the entire

graph G

26 CHAPTER 3. ADOPTED METHODOLOGIES

• f represents the graph classification function

Figure 3.3: Graph Classification

Graph clustering/ Community Detection/ Graph Partitioning:

This refers to two tasks, Vertex clustering and Graph Clustering. In vertex

clustering the nodes are clustered according to the edge weight or edge

distances. Clusters formed are groups of similar nodes in terms of con-

nectivity. In Graph Clustering, however, clusters are formed based on the

similarity in terms of structure, topological structure, etc.

Figure 3.4: Community Detection

Graph generation:

3.3. GRAPH NEURAL NETWORK ARCHITECTURES 27

Used to generate/synthesize new Graph data. It has applications in Drug

discovery. Also, it is used to create synthetic datasets that can be used as

benchmarks.

3.3 Graph Neural Network Architectures

There are loads of models and algorithms used. A few of the commonly

adapted ones include:

• Graph Convolution Network (or GCN)

(KIPF und WELLING (2016))The concept of GCN is similar to the con-

cept of Convolutional Neural Networks in Artificial Neural Networks

such that it uses layer-wise propagation of a first-order approxima-

tion of spectral graph convolutions. This is the most commonly used

method in the GNN domain.

H (l+1) =σ(D
−1
2 AD

−1
2 H (l)W (l)) (3.4)

– where H (l+1) represents the updated node representation of

layer l+1.

– σ represents the sigmoidal or the Relu activation function.

– D is the diagonal matrix degree matrix

– D
−1
2 is the element-wise inverse square root of D

– where H (l) represents the updated node representation of layer

l.

– W (l) Represents the weight matrix for layer l

28 CHAPTER 3. ADOPTED METHODOLOGIES

Figure 3.5: Graph Convolutional Network

GCN involves two steps of typical GNNs

– Aggregation:

an aggregation function such as mean/pooling/RNNs can be

used in the local neighborhood

– Neural Network

then the multiplication by the matrix is performed along with

applying activation functions.

In summary a node embedding is an average of the neighbourhood

passed over a Neural Network

• Message Passing Neural Network (or MPNN)

Figure 3.6: A message passing network

(GILMER et al. (2017)) Message Passing Neural Networks can gener-

ate node as well as graph embeddings. It consists of two stages:

3.3. GRAPH NEURAL NETWORK ARCHITECTURES 29

– Message Passing stage

During this phase the message m for a node v. Then the Node

embedding h is updated.

– Readout Stage

In this phase an embedding h is produced for the entire graph

using the node embedding from the previous stage. The output

is an embedding vector for the entire graph.

MPNNs are computationally expensive and thus used for small

datasets or a small subset.

• Graph Attention (or GAT)

Figure 3.7: Graph Attention Network

(VELIČKOVIĆ et al. (2018)) Similar to GCN however we have an ad-

ditional function that can calculate weights. The assigned weights

mean that the attention function allows more attention to certain

nodes(they are important) than other(less important) nodes. It is a

combination of attention mechanisms and GCNs. Contrary to GCN

the importance of the nodes is not equal. It performs better than

Message Passing Networks(MPNs) but not better than GCN in terms

of computation power.

ei j = Leak yReLu(aT [W hi ||W h j]) (3.5)

ai j = So f tmax(ei j) = exp(ei j)∑
exp(ei j)

(3.6)

30 CHAPTER 3. ADOPTED METHODOLOGIES

– where ei j represents the attention weight between the nodes i

and j.

– (LeakyReLu) represents the Leaky Relu activation function for

nonlinearity.

– aT represents the activation weights which are learnable pa-

rameters.

– [W hi ||W h j] it represents the concatenations transformed node

i and j

– hi and hi represents the original node representations for the

node i and node j respectively

– exp(ei j) Represents the exponential function multiplying ele-

mentwise to the attention scores.

–
∑

exp(ei j) Summation oft he exponential attention scores

– (Softmax) Softmax layer applied so that the attention weights

sum up to one

• GraphSage

Figure 3.8: GraphSage

(HAMILTON et al. (2017)) GraphSage learns embeddings by sampling

and aggregating information local neighborhood of the graph. It

uses a mini-batch such that it samples a fixed set of neighborhoods

for every node and aggregates their features. Thus it allows for cap-

turing information from the immediate neighborhood and generat-

ing node embeddings.

– Sampling

A fixed number of neighbors are sampled for every node in a

mini-batch

3.4. EXPLAINERS 31

– Aggregating

In this stage an aggregation can be applied on the sampled node

such as Mean/Max or LSTM

In this way, GraphSage can capture local as well as global informa-

tion from other nodes.

• Graph Isomerism Network

Figure 3.9: Two isomeric graphs

(XU et al. (2019)) The concept of Graph isomerism is based on the

Weisfeiler-Lehman (WL)(HUANG und VILLAR (2021)) graph isomor-

phism test. An isomeric graph means that the two graphs have the

same structure and identical connections but there is a permutation

of nodes. GIN aggregates and updates node features iteratively. All

the nodes begin with the same label but are hashed in repeatedly un-

til the iterations stop when the labels don’t change any more. The

test can decide whether the graphs are isomeric or not. The resul-

tant graph is very powerful and can perform different GNN tasks like

Node classification, link prediction, graph classification, etc.

3.4 Explainers

• GNNexplainer

(YING et al. (2019)) One of the most common benchmark explain-

ers, GNNexplainer is a model Agnostic explainer. It provides insights

32 CHAPTER 3. ADOPTED METHODOLOGIES

about the predictions of the training. It produces nodes and/or edge

masks highlighting their importance. It can cater to Node classifica-

tion, Link prediction as well as Graph classification. It involves a few

steps

– Training of the model is first done and the predictions are gen-

erated

– GNNexplainer takes a sub-graph and the predictions to give ex-

planations

– The results are visualized for example in a heat map.

• GraphMask Explainer

(SCHLICHTKRULL et al. (2022)) The GraphMask Explainer gives us

insights by removing the edges with lower importance scores and

retaining the edges with higher importance scores. It is similar to

sparsity where the goal is to keep the output intact ignoring as many

edges as possible.

• PGexplainer

Figure 3.10: PGExplainer

(LUO et al. (2020)) It is another commonly used explainer, used as a

benchmark. It is also model agnostic. It uses a Neural Network to

parameterize the process of explanation generation. Compared to

GNN explainer which can capture a local subset, the nature of PGex-

plainer means it targets not just the subset but the entire graph. Its

performance is better than GNNexplainer in terms of AUC-ROC.

• Captum Explainers

(ADEBAYO et al. (2020)) The Captum explainer is a set of explainers

developed for Neural Networks. They can be used in Graph Neu-

ral Networks as well. Some of the explainers belonging to gradient-

based methods include:

3.4. EXPLAINERS 33

– Integrated Gradients

A baseline input is randomly selected or set to zero. Then it com-

putes the gradients using backpropagation of the output with

respect to inputs. Finally, the gradients are integrated with the

actual input from the baseline input. These Integrated gradi-

ents are the importance scores. It highlights the overall input

features importance.

– Saliency

Another gradient-based approach. Input is assigned from the

data that needs analysis. The gradients are computed at the

output with respect to the input using backpropagation. The

gradients are again the importance scores. It highlights the in-

dividual input features that contribute to the output.

Some of the Perturbations methods include:

– Occlusion

Given the perturbation nature, occlusion takes input data points

or a set of data points and masks different parts of the data. It

uses the original data to get the baseline predictions. Differ-

ent strategies can be used like sliding windows or grid-based

masking. The masking strategy is applied to the data to get the

predictions of the occluded version. Finally, it is compared with

the baseline to measure the importance of the features.

• PGMExplainer

(VU und THAI (2020)) Another model agnostic explainer. It con-

structs a graph. The probabilities are calculated. The unimportant

features(with low probabilities) are eliminated. Finally, the explana-

tion is generated with the remaining important features.

• Build own Explainers

The PyTorch Geometric Library is underdeveloped and allows the re-

searchers to use their explainers and built them to the PyTorch for-

mat so it can work like any other explainer that is already part of the

library.

34 CHAPTER 3. ADOPTED METHODOLOGIES

3.5 Explanation evaluation metrics

Several Research papers propose several evaluation metrics.

• Positive(+) Fidelity

(AMARA et al. (2022)) The metric captures positive features or ele-

ments that to GNN predictions. A positive fidelity close to one means

that the positive instances of the model are well aligned with the ex-

planations. A positive fidelity close to one means the explanation is

necessary.

Phenomenon : Fid+ = 1

N

N∑
i=1

(
1(ŷi = yi)−1

(
ŷGc \S

i = yi

))
(3.7)

Model : Fid+ = 1− 1

N

N∑
i=1

(
1
(

ŷGc \S
i = ŷi

))
(3.8)

– N represents the number of samples

– ŷi represents the predicted label for sample number i

– yi it is ground truth of sample i

– ŷGc \S
i represents the predicted label when the sample i is re-

moved from the graph

• Negative(-) Fidelity

(AMARA et al. (2022)) Important components of the graph are al-

tered(e.g. node removed) and how stable the prediction is and its

consistent. It measures how well negative instances of the model

align with the explanations. A negative fidelity close to 1 means that

the explanation is sufficient.

Phenomenon : Fid− = 1

N

N∑
i=1

(
1(ŷi = yi)−1(ŷGS = yi)

)
(3.9)

Model : Fid− = 1− 1

N

N∑
i=1

1(ŷGS
i = ŷi) (3.10)

3.5. EXPLANATION EVALUATION METRICS 35

– N represents the number of samples

– ŷi represents the predicted label for sample number i

– yi it is ground truth of sample i

– ŷGS
i represents the predicted label when the sample i is removed

from the graph

• Characterisation Score

charact = w++w−
w+
fid+

+ w−
1− fid−

= (w++w−)× fid+× (1− fid−)

w+× (1− fid−)+w−× fid+
(3.11)

– w+ represents the positive weights

– w− represents the negative weights

– fid− represents the obtained negative fidelity scores

– fid+ represents the obtained positive fidelity scores

(AMARA et al. (2022)) It is a harmonic mean between the positive and

the negative fidelity. It is similar to the F1 score in the confusion ma-

trix calculated from Precision and Recall. A higher characterization

score signifies that the model is accurate and the explanations cap-

ture the important factors towards the predictions. It balances both

positive and negative fidelity, which means the characterization of

the explanation is both necessary and sufficient.

• Fidelity curve auc

(AMARA et al. (2022)) It is a common evaluation metric. It shows the

trade-off between the true positive rate and the false positive rate. A

higher (ideally .0.5) depicts that the model can well distinguish be-

tween the false and the true instances.

• Unfaithfulness

GEF(y, ŷ) = 1−exp(−KL(y ||ŷ)) (3.12)

– y represents the ground truth distribution

– ŷ represents the predicted label distribution

– KL(y ||ŷ) it represents Kullback-Leibler divergence between the

ground truth and the prediction distributions

36 CHAPTER 3. ADOPTED METHODOLOGIES

(AGARWAL et al. (2023)) The probability vector of the original graph

and the masked subgraph is obtained. The Kullback-Leibler (KL) di-

vergence score is calculated between the masked and the original

outputs. Probabilities variables or vectors are obtained for both.

• Accuracy

A basic metric to know the number of correct predictions. Explana-

tions are compared with the Ground Truth. This is the same as the

one derived from the confusion matrix.

• Sparsity

Only important features are used for explanations and unimportant

features are not included in the explanations so the Graph is smaller

than the original.

4
Implementation and Evaluation

4.1 Configuration

4.1.1 System Configuration

A virtual machine that can be accessed remotely was obtained from a high-

performance PC of the university. The main purpose of HPC use to train

the models and the explainers. The training takes a huge chunk of time

and resources. The GPUs are well known to perform well in Deep Learning.

(The final application does not require GPU and HPC). The following are

the CPU specifications:

Table 4.1: System configuration

Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit

Byte Order Little Endian
CPU(s): 128

Thread(s) per core: 2
Core(s) per socket: 32

Socket(s): 2
Model name: AMD EPYC 7532 32-Core Processor

Frequency boost: enabled
CPU MHz: 1500.000

CPU max MHz: 2400.0000
CPU min MHz: 1500.0000
Virtualization: AMD-V

37

38 CHAPTER 4. IMPLEMENTATION AND EVALUATION

4.1.2 Languages, Tools, and Frameworks

• Python language is implied in this thesis. It is the most widely used

language in AI. It is open source. PyPI is a repository where the com-

munity shares libraries. Hence strong support is available.

• Visual Studio Code is used as a compiler. It is very versatile as it

allows extensions of other tools to be downloaded. In this project, it

provided multiple functions:

– Remote desktop connection to the Virtual machine provided

– it allows file explorer extensions in SSH remote desktop

– Not only can it include the Python compiler but it can work like

a notebook incorporating the Ipython kernel separately

– A local virtual environment for the workspace, keeping it sepa-

rate from other environments

– As described later, it also contains its terminal and can be used

to run the application server

• PyTorch

(PASZKE et al. (2019) PyTorch is a deep learning framework for Python.

It is the preferred platform of the researchers. The alternative to

PyTorch is Tensorflow (ABADI et al. (2016) is better for the non -

research applications. For the GNN the following PyTorch-based

frameworks were tried and tested:

– Dive into Graphs (or DIG)

(LIU et al. (2021)) available at (DIVE INTO GRAPHS (2023))

– Deep Graph Library (or DGL)

(WANG et al. (2019)) available at (DEEP GRAPH LIBRARY (2023))

– PyTorch Geometric (PyG)

(FEY und LENSSEN (2019)) available at (PYTORCH GEOMETRIC

(2023))

We will however use simply PyG because each library uses object-

oriented frameworks and using the frameworks simultaneously is

not possible even though we require the capability and different im-

plementation of every library. Because PyG is from the developers of

4.1. CONFIGURATION 39

PyTorch itself, there is a general expectation that in the future it will

gain superiority over the others. Otherwise, in the nascent domain

of GNN, considering all three libraries, one is better in some areas

but lacks the other ones in other areas, and so on.

• Streamlit

(STREAMLIT) Streamlit is an easy and simple application platform. It

has good integration with Machine learning implementations. It is

used for fast prototyping and works on .py extensions rather than

huge frontends and backends.

The following languages and their versions are mentioned. The versions

are consistent for every part of the thesis.

Table 4.2: Languages and Frameworks Version

Python 3.10.11
PyTorch 2.0.1(py3.10 cuda 11.8 cudnn 8.7.0)

pyg 2.3.0
tqdm 4.65.0

scikit-learn 1.2.2
scipy 1.10.1

streamlit 1.24.1
matplotlib 3.7.1

torchmetric 0.11.2
torchvision 0.15.2
torchaudio 2.0.2
ipykernel 6.15.0
ipython 8.13.2

ipywidgets 8.0.4

4.1.3 The experiment settings

Input configuration

For simplicity, we select the following configuration:

• Task: Node Classification

• Datasets: Cora, Citeseer, and Pubmed

40 CHAPTER 4. IMPLEMENTATION AND EVALUATION

these datasets contain single homogeneous graph citation networks

suitable for Node classification

• Models: four possible GNN architectures GCN, GAT, GIN, and Graph-

Sage are used

• Explainer use includes GNNExplainer and GraphMask.

• To maintain standardization, we select the node index as 10. This

means for every setting we use the same node with regards to the

selected dataset like Cora. So each time we use for example Cora we

use the same Node (no. 10).

Table 4.3: Node Classification combinations

Dataset Explainer Model

1 Cora GNNExplainer GCN
2 Cora GNNExplainer GAT
3 Cora GNNExplainer GIN
4 Cora GNNExplainer GraphSage
5 Cora GraphMask GCN
6 Cora GraphMask GAT
7 Cora GraphMask GIN
8 Cora GraphMask GraphSage
9 Citeseer GNNExplainer GCN

10 Citeseer GNNExplainer GAT
11 Citeseer GNNExplainer GIN
12 Citeseer GNNExplainer GraphSage
13 Citeseer GraphMask GCN
14 Citeseer GraphMask GAT
15 Citeseer GraphMask GIN
16 Citeseer GraphMask GraphSage
17 Pubmed GNNExplainer GCN
18 Pubmed GNNExplainer GAT
19 Pubmed GNNExplainer GIN
20 Pubmed GNNExplainer GraphSage
21 Pubmed GraphMask GCN
22 Pubmed GraphMask GAT
23 Pubmed GraphMask GIN
24 Pubmed GraphMask GraphSage

4.2. IMPLEMENTATION 41

the combinations are all available in PyTorch Geometric Library. This is

closely associated with PyTorch itself which is Deep Learning framework.

Currently, it is still under development. Even though it also currently has

limited implementations and lack of helping resources, it is still impor-

tant because, it provides classes where you can implement your datasets,

your GNN explainers. This means that not only the library will incorpo-

rate more research papers into its platforms but also gives researchers the

ability to use their own explainers and datasets.

Evaluation metrics

Upon training the models and the Explainers in the GNN xEval application

based on Streamlit, we will be able to get the performance metrics of the

explainers. The performance metrics chosen include:

• Fidelity(positive and negative)

• Characterisation Score

• Unfaithfulness

4.2 Implementation

4.2.1 User Interface

Figure 4.1 shows the simple interface of the Streamlit application. It con-

tains the three possible options with drop-down menus. The application

takes a bit of time when initialized by the terminal in VS code. The options

are :

• Dataset

• Explainer

• Architecture

42 CHAPTER 4. IMPLEMENTATION AND EVALUATION

Figure 4.1: GNN xEval application

As shown in 4.2, The xEVal application dorp down menus. The train does

not start until the explain button is clicked.

Figure 4.2: GNN xEval choosing the options

In 4.3 at the top right we can see the running sign. This occurs after the

explain button is picked. The entire process of training the GNN and its

explainer along with the evaluation metrics is being worked on.

4.2. IMPLEMENTATION 43

Figure 4.3: GNN xEval in training (shows running at top right for the duration of
training)

Finally in 4.4 we can see the results. The training phase takes about one

minute depending on the configuration.

Figure 4.4: Application displaying results of the evaluation

4.2.2 The Process

The steps for the entire process are as follows:

44 CHAPTER 4. IMPLEMENTATION AND EVALUATION

1. load the dataset

2. Define the GNN architecture

3. Train the GNN model

4. Select the explainer

5. Set the relevant configuration

6. train on the node to explain

7. Display the relevant performance metrics

4.2.3 The Implementation

The thesis implementation can be divided into phases.

Firstly, in VS Code, Python, and Ipython kernel need to be added along

with SSH client. The SSH settings and credentials are provided by the

University. Alternatively, the virtual environment can also be from Ana-

conda (miniconda)(ANACONDA (2023)). The virtual environment is neces-

sary, otherwise, the libraries will be installed on the root of the operating

system.

In the next phase the libraries following libraries will be added to the vir-

tual environment.

1. PyTorch

2. PyTorch Geometric

3. Matplotlib (for visualisations)

This order is important otherwise it would create problems.

There is a bifurcation here.

• Running and testing GNN and its explainer individually

• The same environment can be replicated to be used for Streamlit Ap-

plication. (Also adding Streamlit libraries and other dependencies to

the environment.)

4.2. IMPLEMENTATION 45

For the first direction, individual codes were written for the following:

1. Load the datasets

Here I ran and tested a lot of datasets for the research. These datasets

are loaded into PyG explainer class. The statistics of the data were

also printed in the cell output of the notebook.

2. GNN models

Then I trained them on four different GNN models, GCN, GAT, GIN,

GraphSage separately.

3. Explainers

Then I implemented the codes for different explainers including

GNN explainer and tested them separately. Many of them face some

library-related issues. Some of them worked correctly after debug-

ging and correcting, whereas others still faced problems with the

PyG library. Explainer training usually takes more time to train than

the model training of GNN.

4. Evaluation Metrics

I wrote the codes and investigated different metrics including Fi-

delity. I faced some with regard to the fact that some metrics re-

quire the Ground Truth to provide the confusion metrics while other

metrics did not relate to the ground truth. While some datasets

including the synthetics provide the ground truth others don’t. How-

ever, it is not easy to find their documentation whether they include

the ground truth or not. In the end, I had to drop many unimpor-

tant metrics, that had library-related issues and those based on the

ground truth (as they were only relevant to individual cases). For the

experiments I selected:

• +Fidelty

• - Fidelty

• Characterisation Score

• Unfaithfulness

46 CHAPTER 4. IMPLEMENTATION AND EVALUATION

GNN xEval Streamlit application For the second part, once I got the work-

ing results, it‘s time to implement them on a separate Streamlit applica-

tion(a bifurcation of the virtual environment discussed earlier). The basic

structure is created and discussed in the previous section. The Streamlit

application requires a working .py extension rather than the iPython ker-

nel. Hence a separate file was created. The running codes were extracted

from the earlier implementations. The structure of the Python file is dif-

ferent and requires some changes in the code. Furthermore, setting it in a

way that Streamlit can compile and process its required changes(It would

be a running application server).

Finally the combinations that are pointed out in the earlier section are

tried and tested on the GNN xEval and the detailed results are mentioned

in the references in the end A.1.

4.3 Results and discussion

4.3.1 The Application

It is simple and user-friendly. The following diagram shows a glimpse of

the application and its capabilities:

Figure 4.5: GNN xEval application

4.3. RESULTS AND DISCUSSION 47

The application has an easy-to-use interface. We can select several options

from the drop-down options and then press Explain button to start the

training. There is a bar (figure given in the detailed results) at the top right

that says running when it’s training. Usually, the training takes not more

than one minute. The results are finally displayed in terms of metrics.

4.3.2 Characterisation Score

Instead of comparing the Fidelity score positive and negative, the charac-

terization score is the harmonic mean of both the Fidelities. Hence we

directly discuss the Charact. A better characterization score means the ex-

planations are sufficient and necessary.

Figure 4.6: Characterisation Score

• The comparison of characterization score shows that applying GAT

on the Cora dataset using a GNN explainer has the highest score

showing that it has a more sufficient explanation and necessary ex-

planation than other configurations.

• The CORA dataset has been in general better explanations than oth-

ers in terms of the Characterisation score.

• GraphSage generally does not fare very well

• However GAT explanations generally do exceptionally high or fare

comparable to others. It does not usually fare less

48 CHAPTER 4. IMPLEMENTATION AND EVALUATION

4.3.3 Unfaithfulness

Figure 4.7: Unfaithfullness

Then the higher the values of Unfaithfulness mean the higher the degree

of Unfaithfulness.

• The comparison of unfaithfulness shows that explanations are more

unfaithful when using GraphSage when used with GraphMask ex-

plainer except in the Pubmed dataset.

• Explanation with GCN has been generally more unfaithful than other

cases except when used in Pubmed with GraphMask.

• GAT only has been less Unfaithful when used in the Cora dataset

than others.

Hence the researchers can get the results from the application. With the

PyG library, they can include their dataset and explainer and use them in

this application.

5
Conclusions and Future Work

5.1 Conclusions

The thesis aimed to show the concept that a unified application platform

that has possible different settings. It can have different configurations

with variations in datasets, GNN models, Explainers, and explainer evalu-

ation metrics. The application can produce results that can be compared

with other results. A user simply selects an explainer, dataset, and the GNN

model.

Some research questions were introduced in the introduction chapter1.

An understanding of sufficient and necessary explanations is provided and

in the results, we can see some sufficient and necessary explanations.

The thesis presented an overview of the dataset types like homogeneous

and heterogeneous, and some of the common datasets used that are in

the libraries. A number of statistics are provided to have a comparison

and determine which graph is suitable for which GNN task.

As far as the GNN model architectures are concerned, four relevant tasks

including GCN have been discussed and implemented. They are all part

of the GNN xEval application.

The GNN tasks are presented however due to standardization of the re-

sults, only Node Classification was selected. The explainers mentioned

(like GraphMask) were tested, however, some of them dropped due to var-

ious reasons including bugs (like PGMexplainer). Hence GNN explainer

and GraphMask were used. The combination provided in the table 4.3

(similar to A.1)works without trouble.

49

50 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

The explainer evaluations also suffer from library problems. Only a hand-

ful of them are provided in the PyG. Further, the existing libraries for GNN

are shown. All the datasets, explainers, GNN tasks, as well as explainer

evaluation metrics, are selected.

The unified user-friendly Streamlit application named GNN xEval is pre-

sented. The GNN xEval in a very simple interface allows the user to select

the relevant configuration and allows the explainer to train. The results

of the evaluation metric are then displayed in text form. This application

takes a small chunk of around a minute on a CPU device. The results of a

few metrics are then displayed. Hence the user can then use the outputs

to compare the results with the ones they acquired previously.

5.2 Limitations

During the progression of the thesis several constraints were faced. Some

of the limitations were overcome while others require a change of ap-

proach. Some limitations meant that the entire part was dropped. Some

of the limitations are mentioned below

1. During the literature review, several research papers had no associ-

ated or restricted code provided. The ones that provided code rarely

worked, as they have very specific hardware configurations (for Py-

Torch GPU binaries)

2. Although included in the library PyG, the PG explainer, Captum ex-

plainer even the PGM explainer gave errors upon training for an ex-

planation, whereas the GNN explainer and the Graph Mask explainer

worked just fine. The unusual data type error means the library is still

buggy.

3. The Streamlit application cannot run Matplotlib for plotting graphs

perfectly, hence feature visualization and importance graphs were

dropped

4. The GPU available is accessible remotely, however, it has to be either

accessed from University premises or via VPN as part of the univer-

sity. However, there are connectivity issues and upon some event oc-

currence, the entire training(which takes a long time) phase is lost.

5.3. FUTURE WORK 51

5. The general problem with GNN and its explainability is that the re-

sources are scattered, and different platforms, provide different re-

sources. For example, Sparsity and Fidelity metrics are available in

DGL but sparsity is not available in another library. The other library

has unfaithfulness and accuracy but the first one does not.

6. The GNN xEval application is currently based on CPU. To include

more explainers, and some particular evaluation metrics like fidelity

vs time and identity Area under curve (receiver operator characteris-

tics it requires GPU. Otherwise, it takes either a lot of time or some

GPU-intensive tasks are simply dropped.

7. Limited literature exists on this matter. For instance, merely exam-

ining the data statistics does not allow us to distinguish whether it

is utilized for tasks like node classification, link prediction, or graph

classification.

5.3 Future Work

Some of the future work can include:

1. More evaluation metrics can be manually written as a function. Also,

with PyTorch Geometric under development, we would see more

and more stuff incorporated into the library. All of this can be mir-

rored and reflected in the Graph xEval Application.

2. Also, more explainers can be added to the platform either using the

library’s custom explainer or waiting for the developer to include

more in the future.

3. The GNN xEval application can provide two or more explanations

simultaneously and provide a comparison within the application.

4. Because of the different nature of tackling the explanation problem.

The explainers usually do not follow some general metrics. Expand-

ing the current number of explainers and metrics in GNN xEval can

help researchers compare more explainers.

5. Apart from Node Classification; Link prediction, and Graph Classifi-

cation can be targeted.

52 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

6. Wider range of datasets can be included.

7. More options can be included for the configuration like explainer

type "phenomenon" or "model".

8. A time-based analysis can be included such that GIN always per-

forms faster than other models. This information can be a helpful

metric for the researchers.

9. A complex interface can be introduced and certain checks, e.g. At-

tention explainer cannot run on GCN or PG explainer only runs on

the phenomenon.

10. More visualization can be incorporated into the application. There

would be some workarounds in the Streamlit application to include

the visualization including the one specific to GNN like using the li-

brary Networkx(HAGBERG et al. (2008)).

A
Detailed Results

Table A.1: Results for explainer evaluation using certain metrics

Dataset Explainer Model Fidelity (+,-) Charact score Unfaithfullness

1 Cora GNNExplainer GCN 0.0048006, 0.7821270 0.0093942 0.0829030
2 Cora GNNExplainer GAT 0.0055391, 0.8220088 0.0107438 0.0117922
3 Cora GNNExplainer GIN 0.0029541, 0.8415805 0.0058002 0.0428004
4 Cora GNNExplainer GraphSage 0.0014771, 0.8770310 0.0029191 0.0680301
5 Cora GraphMask GCN 0.0040620, 0.8268094 0.0079379 0.1001273
6 Cora GraphMask GAT 0.0051698, 0.8689069 0.0099474 0.0334298
7 Cora GraphMask GIN 0.0033234, 0.8205317 0.0065261 0.0451869
8 Cora GraphMask GraphSage 0.0025849, 0.8194239 0.0050969 0.0522613
9 Citeseer GNNExplainer GCN 0.0021039, 0.8569281 0.0041469 0.2135248

10 Citeseer GNNExplainer GAT 0.0030056, 0.8331830 0.0059049 0.1083208
11 Citeseer GNNExplainer GIN 0.0015028, 0.8232641 0.0029803 0.0950056
12 Citeseer GNNExplainer GraphSage 0.0015028, 0.8256687 0.0029800 0.1346806
13 Citeseer GraphMask GCN 0.0024045, 0.8334836 0.0047406 0.1916656
14 Citeseer GraphMask GAT 0.0021039, 0.8154493 0.0041605 0.1416324
15 Citeseer GraphMask GIN 0.0024045, 0.8412984 0.0047373 0.1419266
16 Citeseer GraphMask GraphSage 0.0024045, 0.9161406 0.0046750 0.2807985
17 Pubmed GNNExplainer GCN 0.0012679, 0.5880712 0.0025281 0.1387156
18 Pubmed GNNExplainer GAT 0.0007607, 0.5649946 0.0015189 0.2790257
19 Pubmed GNNExplainer GIN 0.0008114, 0.7092356 0.0016183 0.0764944
20 Pubmed GNNExplainer GraphSage 0.0009129, 0.6379773 0.0018212 0.0384463
21 Pubmed GraphMask GCN 0.0011665, 0.5644367 0.00232681 0.0327048
22 Pubmed GraphMask GAT 0.0009636, 0.6277831 0.0019222 0.0694633
23 Pubmed GraphMask GIN 0.0011665, 0.6263123 0.0023257 0.0358163
24 Pubmed GraphMask GraphSage 0.0011157, 0.5686970 0.0022258 0.2701116

53

B
Abbreviations and Notations

Acronym Meaning

AI Artificial Intelligence
AUC Area under curve
BA Barabasi-Albert (BA) base graph

BIC Bayesian Information Criterion
Charact Characterisation Score

GAT Graph Attention Network
GCN Graph Convolutional Network
GIN Graph Isomerism Network
GNN Graph Neural Network
GPU Graphic Processing Unit
HPC High Performance computer

MPNN Message Passing Neural Network
NLP Natural Language Processing
NN Neural Network

RNN Recurrent Neural Network
ROC Receiver operator characteristics
SSH Secure Shell

TGNN Temporal Graph Neural Network
VPN Virtual Private Network

VSCode Visual Studio Code
WL Weisfeiler-Lehman graph isomorphism test

X dataset
XAI Explainable Artificial Intelligence

55

C
List of Figures

2.1 GNN Explainers classification and examples 7

2.2 A simple Graph . 12

2.3 A simple directed graph . 13

2.4 A simple undirected graph . 14

2.5 A Homogeneous Graph . 14

2.6 A Heterogeneous Graph . 15

2.7 The embedding function f . 16

2.8 Input Graph with target node as node labelled 2 17

2.9 The computation graph for GNN 18

3.1 Node classification . 24

3.2 Link Prediction . 25

3.3 Graph Classification . 26

3.4 Community Detection . 26

3.5 Graph Convolutional Network 28

3.6 A message passing network . 28

3.7 Graph Attention Network . 29

3.8 GraphSage . 30

3.9 Two isomeric graphs . 31

3.10 PGExplainer . 32

4.1 GNN xEval application . 42

57

58 APPENDIX C. LIST OF FIGURES

4.2 GNN xEval choosing the options 42

4.3 GNN xEval in training (shows running at top right for the du-

ration of training) . 43

4.4 Application displaying results of the evaluation 43

4.5 GNN xEval application . 46

4.6 Characterisation Score . 47

4.7 Unfaithfullness . 48

D
List of Tables

2.1 Homogeneous graphs vs Heterogeneous graphs 15

3.1 Statistics for common Homogeneous graph datasets 22

4.1 System configuration . 37

4.2 Languages and Frameworks Version 39

4.3 Node Classification combinations 40

A.1 Results for explainer evaluation using certain metrics 53

59

E
Bibliography

[ABADI et al.] TensorFlow: Large-Scale Machine Learning on Heteroge-

neous Distributed Systems. https://www.tensorflow.org.

[ADEBAYO et al. 2020] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow,

M. Hardt, B. Kim, P. Medina, A. Qin und S. Zheng. Captum: A Unified

and Generic Model Interpretability Library for PyTorch. 2020. GitHub

repository.

[AGARWAL et al. 2023] C. Agarwal, O. Queen, H. Lakkaraju und M. Zitnik.

2023, Evaluating Explainability for Graph Neural Networks.

[AMARA et al. 2022] K. Amara, R. Ying, Z. Zhang, Z. Han, Y. Shan, U. Bran-

des, S. Schemm und C. Zhang. 2022, GraphFramEx: Towards System-

atic Evaluation of Explainability Methods for Graph Neural Networks.

[ANACONDA] miniconda. https://docs.conda.io/en/latest/
miniconda.html. Accessed: 20 07, 2023.

[AZZOLIN et al. 2023] S. Azzolin, A. Longa, P. Barbiero, P. Liò und

A. Passerini. Global Explainability of GNNs via Logic Combination of

Learned Concepts. 2023.

[DAI und WANG 2021] E. Dai und S. Wang. Towards Self-Explainable

Graph Neural Network. 2021.

[DEEP GRAPH LIBRARY] Deep Graph Library. https://www.dgl.ai/. Ac-

cessed: 20 07, 2023.

61

https://www.tensorflow.org
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://www.dgl.ai/

62

[DIVE INTO GRAPHS] Dive into Graphs Documentation. https://
diveintographs.readthedocs.io/en/latest/. Accessed: 20 07,

2023.

[DUVAL und MALLIAROS 2021] A. Duval und F. D. Malliaros. GraphSVX:

Shapley Value Explanations for Graph Neural Networks. 2021.

[FEY und LENSSEN 2019] M. Fey und J. E. Lenssen. Fast Graph Representa-

tion Learning with PyTorch Geometric. Proceedings of the 33rd Confer-

ence on Neural Information Processing Systems (NeurIPS 2019), 2019.

[FU et al. 2020] X. Fu, J. Zhang, Z. Meng und I. King. MAGNN: Metapath

Aggregated Graph Neural Network for Heterogeneous Graph Embed-

ding. In: Proceedings of The Web Conference 2020. 2020, ACM.

[GILMER et al. 2017] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals und

G. E. Dahl. Neural Message Passing for Quantum Chemistry. In: Pro-

ceedings of the 34th International Conference on Machine Learning,

2017, pp. 1263–1272.

[HAGBERG et al. 2008] A. A. Hagberg, D. A. Schult und P. J. Swart. Explor-

ing network structure, dynamics, and function using NetworkX. Pro-

ceedings of the 7th Python in Science Conference (SciPy2008), pp. 11–

15, 2008.

[HAMILTON et al. 2017] W. Hamilton, R. Ying und J. Leskovec. Inductive

Representation Learning on Large Graphs. In: Advances in Neural In-

formation Processing Systems, 2017, pp. 1024–1034.

[HARPER und KONSTAN 2015] F. M. Harper und J. A. Konstan. The Movie-

Lens Datasets: History and Context. ACM Transactions on Interactive

Intelligent Systems, Vol. 5(4), 2015.

[HE et al. 2022] W. He, M. N. Vu, Z. Jiang und M. T. Thai. An Explainer for

Temporal Graph Neural Networks. 2022.

[HU et al. 2020] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta

und J. Leskovec. Open Graph Benchmark: Datasets for Machine Learn-

ing on Graphs. arXiv preprint arXiv:2005.00687, 2020.

[HUANG und VILLAR 2021] N. T. Huang und S. Villar. A Short Tutorial on

The Weisfeiler-Lehman Test And Its Variants. In: ICASSP 2021 - 2021

https://diveintographs.readthedocs.io/en/latest/
https://diveintographs.readthedocs.io/en/latest/

63

IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP). 2021, IEEE.

[KERSTING et al. 2016] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel und

M. Neumann. Benchmark Data Sets for Graph Kernels. 2016.

[KIPF und WELLING 2016] T. N. Kipf und M. Welling. Semi-Supervised

Classification with Graph Convolutional Networks. arXiv preprint

arXiv:1609.02907, 2016.

[LESKOVEC und KIPF 2021] J. Leskovec und T. Kipf. CS224W: Machine

Learning with Graphs. 2021. Lecture slides.

[LIU et al. 2021] M. Liu, Y. Luo, L. Wang, Y. Xie, H. Yuan, S. Gui, H. Yu, Z. Xu,

J. Zhang, Y. Liu, K. Yan, H. Liu, C. Fu, B. M. Oztekin, X. Zhang und S. Ji.

DIG: A Turnkey Library for Diving into Graph Deep Learning Research.

Journal of Machine Learning Research, Vol. 22(240):1–9, 2021.

[LU und LI 2020] Y.-J. Lu und C.-T. Li. GCAN: Graph-aware Co-Attention

Networks for Explainable Fake News Detection on Social Media. 2020.

[LUO et al. 2020] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen und

X. Zhang. 2020, Parameterized Explainer for Graph Neural Network.

[PASZKE et al.] PyTorch: An Imperative Style, High-Performance Deep

Learning Library. https://pytorch.org.

[PYTORCH GEOMETRIC] PyTorch Geometric. https://
pytorch-geometric.readthedocs.io/en/latest/index.html.

Accessed: 20 07, 2023.

[ROZEMBERCZKI et al. 2020] B. Rozemberczki, O. Kiss und R. Sarkar. Karate

Club: An API Oriented Open-source Python Framework for Unsuper-

vised Learning on Graphs. In: Proceedings of the 29th ACM Interna-

tional Conference on Information and Knowledge Management (CIKM

’20), p. 3125–3132. 2020, ACM.

[SCHLICHTKRULL et al. 2022] M. S. Schlichtkrull, N. D. Cao und I. Titov. In-

terpreting Graph Neural Networks for NLP With Differentiable Edge

Masking. 2022.

https://pytorch.org
https://pytorch-geometric.readthedocs.io/en/latest/index.html
https://pytorch-geometric.readthedocs.io/en/latest/index.html

64

[SCHNAKE et al. 2022] T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K. T.

Schutt, K.-R. Muller und G. Montavon. Higher-Order Explanations of

Graph Neural Networks via Relevant Walks. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, Vol. 44(11):7581–7596, 2022.

[STREAMLIT] Streamlit. https://streamlit.io/. Accessed: 20 07, 2023.

[SUN et al. 2017] H. Sun, J. Hu, Y. Li, M. Qu, J. Tang, X. Huang und J. Han.

Cross-lingual entity alignment via joint attribute-preserving embed-

ding. In: Proceedings of the 26th International Joint Conference on Ar-

tificial Intelligence (IJCAI), 2017, pp. 1511–1517.

[TONG et al. 2016] W. Tong, H. Hong, H. Fang, G. Liu, Y. Li, Y. Shi und J. Li.

Prediction of Mutagenicity of Chemical Compounds Using Ensemble

Learning Methods. Molecules, Vol. 21(7), 2016.

[VELIČKOVIĆ et al. 2018] P. Veličković, G. Cucurull, A. Casanova, A. Romero,

P. Liò und Y. Bengio. Graph Attention Networks. 2018.

[VU und THAI 2020] M. N. Vu und M. T. Thai. 2020, PGM-Explainer: Prob-

abilistic Graphical Model Explanations for Graph Neural Networks.

[WANG et al. 2019] M. Wang, D. Zheng, S. Zhang, J. Zhou, C. Ma, J. Shao,

Z. Ye, Q. Guo, H. Xiong und Z. Zhang. Deep Graph Library: A Graph-

Centric, Highly-Performant Package for Graph Neural Networks. 2019,

In: Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining.

[XU et al. 2021] J. Xu, Minhui, Xue und S. Picek. Explainability-based Back-

door Attacks Against Graph Neural Networks. 2021.

[XU et al. 2019] K. Xu, W. Hu, J. Leskovec und S. Jegelka. How Powerful are

Graph Neural Networks? 2019.

[YANG et al. 2016] Z. Yang, W. W. Cohen und R. Salakhutdinov. 2016, Revis-

iting Semi-Supervised Learning with Graph Embeddings.

[YING et al. 2019] R. Ying, D. Bourgeois, J. You, M. Zitnik und J. Leskovec.

GNNExplainer: Generating Explanations for Graph Neural Networks.

2019.

https://streamlit.io/

65

[YUAN et al. 2020] H. Yuan, J. Tang, X. Hu und S. Ji. XGNN: Towards Model-

Level Explanations of Graph Neural Networks. In: Proceedings of the

26th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 2020, ACM.

[YUAN et al. 2022] H. Yuan, H. Yu, S. Gui und S. Ji. Explainability in Graph

Neural Networks: A Taxonomic Survey. 2022.

Declaration of Academic Integrity

I hereby declare that I have written the present work myself and did not

use any sources or tools other than the ones indicated.

Datum: ...

(Signature)

hp
Typewriter
23.07.2023

	Abstract
	Introduction
	Overview
	Importance
	Importance of Graph Neural Networks
	Importance of explainability

	Motivation
	Aim of the thesis
	Structure of the thesis

	Background
	Classification of Explainers
	Current Research
	Preliminaries
	The simple Graph structure
	Node and edges
	Directed and Undirected graphs
	Homogeneous and Heterogeneous graphs
	Graphs in Neural Networks
	Some definitions about explanations:

	Adopted Methodologies
	Graph Datasets
	Homogeneous datasets
	 Heterogeneous datasets
	 Synthetic datasets

	Graph Neural Network tasks
	Graph Neural Network Architectures
	Explainers
	Explanation evaluation metrics

	Implementation and Evaluation
	Configuration
	System Configuration
	Languages, Tools, and Frameworks
	The experiment settings

	Implementation
	User Interface
	The Process
	The Implementation

	Results and discussion
	The Application
	Characterisation Score
	Unfaithfulness

	Conclusions and Future Work
	Conclusions
	Limitations
	Future Work

	Detailed Results
	Abbreviations and Notations
	List of Figures
	List of Tables
	Bibliography

