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Abstract

Knowledge graphs have various applications, from recommendations to informa-
tion retrieval. It is seen as an efficient way of storing information from various
sources about real-world entities and relations in a form that can be used to make
further inferences. On the other hand, the usage of Knowledge Graphs in the
Manufacturing process has been a relatively recent field of application, especially
in procedural knowledge graphs, a very recent phenomenon. Procedural Graphs
represent real-world operator knowledge involving parameters and the quality of
the products produced as the effect of the parameters initially set. To utilize the
operator knowledge modelled as a Knowledge graph, we use various embedding
methods to learn a low-dimensional representation that can be further used in
the downstream tasks. Graph neural networks have been known to effectively
capture the local neighbourhood structures of Large Knowledge Graphs as per
the available literature. In our thesis, we would like to demonstrate the quality of
Graph neural network-based embedding for procedural knowledge graph rep-
resentations. We use a practical manufacturing use case of the Fused Diffusion
Model 3D printing for procedural knowledge graph and introduce an evaluation
metric Matches@k evaluate the quality of embedding produced using the Tradi-
tional embedding models like translation model and semantic models against
the Graph neural network-based approaches like Graph convolution network
and its variants. We further will show that while Graph neural networks perform
well in the case of high abstract weighted procedural graphs, these models suffer
from complex graph properties at lower abstraction levels.





We now think of internal representation as great big vectors, and we do not think
of logic as the paradigm for how to get things to work. We just think you can have
these great big neural nets that learn, and so, instead of programming, you are just

going to get them to learn everything.

Geoffrey E Hinton
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1
Introduction and Motivation

Data-Driven Machine learning has made impressive strides in various ap-

plications across different domains- language modeling, drug discovery,

autonomous vehicles and many more. The eventual step and the driver of

Industry 4.0 is the use of Machine learning-based automation that would

learn from various manufacturing applications on the factory floor or pro-

duction line. These tasks can range from quality control to load prediction.

The future of the manufacturing industries is to leverage these machine

learning systems to automate, plan, control and optimize the production

process to eventually lead to monetary benefits and high-quality product

outputs with available resources.

The most crucial aspect of data-driven machine learning processes is to

structure the data and enable its usage in the various downstream tasks.

Knowledge Graphs(KG) have been viewed as an efficient method to repre-

sent structured heterogeneous data, allowing us to have semantic mean-

ing in their representation. Incorporating this knowledge stored in the

form of Knowledge Graphs to efficiently capture the semantic meaning

of the graphs into representations that can be used in machine learning

tasks.

1.1 AIPE project

Expert knowledge is crucial in many production processes. Finding a

parameterization for which the production process provides appropri-

ate results is a crucial task in manufacturing automation. Experienced

operators perform these parameterization processes using an iterative,

resource- and time-intensive workflow. This workflow of parameteriza-

1
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tion consists of four significant steps. At first, an operator sets the default

starting parameters for a Fusion Diffusion model additive manufacturing

process (3D -printing) and starts the process. Second, the product, thus

produced, undergoes quality tests by specific quality control personnel

who rate the quality of the products on various pre-defined criteria. Third,

depending on the quality of the product produced in the first iteration,

the expert operator adjusts the process parameter to obtain a better re-

sult. Fourth, at each cycle and quality test, the operators may decide to

accept the product at the current quality level or improve it through re-

parameterization for another iteration. NORDSIECK et al. (2019) envisions

a way to automate the re-parameterization process. The parameters for

any given iteration are defined by the quality level of the product from the

previous iteration and the process parameters previously set to achieve

them.

Figure 1.1: Iterative parametrization process of AIPE (NORDSIECK et al., 2021)

The operator knowledge used for parameterization can be represented in

a Knowledge graph as a relationship between various quality characteris-

tics and process parameters, and NORDSIECK et al. (2019) further defines

various representations which can be used to represent them at varying
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levels of abstraction. This semantically meaningful information in these

Knowledge Graphs can be further represented as low-dimensional vectors

called embeddings, which could be incorporated into a downstream task

that involves predicting the next set of parameters to obtain better results.

1.2 Motivation

In order to incorporate the knowledge stored in the form of a knowledge

graph, knowledge graph representation or embeddings have been used ex-

tensively in many practical applications and research. These embeddings

represent nodes and edges and the semantic meaning they carry through

the relationship. Most Knowledge graph information has been viewed as a

method to store data from different sources in a heterogeneous structured

format. The embedding generated from these graphs are representations

of facts presented in the knowledge graph as low-dimensional vectors.

However, our use case of the AIPE project uses a Knowledge graph to

model operator knowledge. Operator knowledge is a tacit resource and

one that is obtained through years of experience and investment. This

resource is not just facts but a representation of a knowledge-backed

decision-making system. Procedure Knowledge graphs are used to rep-

resent these operator knowledge as connections between the process

parameters and quality characteristics.

Procedural knowledge graphs are different from the widely available Open

Knowledge Graphs. These knowledge graphs have complex, chained bi-

nary, n-ary, and reified relations. Together, the neighbourhood recon-

struction process becomes challenging for any model which learns em-

beddings from the procedural data representations. The quality of the

embeddings is vital to our parameter prediction system. The prediction’s

quality determines the quality of the products produced in the next iter-

ation. So, we posit using state-of-the-art embedding models to capture

the graph’s node features and relation features. Currently, in literature and

practice, these embedding models, which are used to learn dense low-

dimensional vectors, are trained over fact-based Knowledge graphs with

different entity types and relation types. Some of these models perform

extensively in capturing the neighbourhood structures when trained on

available Open knowledge graphs. In the same context, we would like to
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know how these embedding models perform when the knowledge graph

is not just general knowledge facts but procedural information from the

manufacturing process.

In this thesis, we aim to evaluate the use of Graph Neural Networks(GNN)-

based embeddings learnt in the context of procedural knowledge graphs.

Graph neural networks have recently been at the forefront of knowledge

representation learning. Known for their expressiveness and performance

when compared to other baseline models, Graph Neural networks have

been seen to outperform many baseline models like translation and se-

mantic models in Link prediction or Entity classification tasks. These mod-

els are known to effectively model the local neighbourhood of a node and

have the flexibility to accommodate a large number of node features and

edge features to learn from them through message passing. Most perfor-

mance indicators in the literature for all embedding models are against

known Open Knowledge graph ontologies. Here, we would like to gauge

the performance of GNNs in the context of procedural knowledge graphs,

which differ in data sizes, atomicity and graph sub-graph structures.

Our thesis evaluates the learned embeddings from some popular Graph

neural network models over the procedural graphs. Here, we would imple-

ment the Graph convolutional network, Relational Graph convolutional

network and Relational Graph Attention network models for training the

embeddings over a procedural graph. The procedural graph will be imple-

mented in differing levels of abstraction, and the GNN models mentioned

above will be trained over these representations individually. Additionally,

we have introduced a new evaluation metric, M atches@k, which suits

our prediction task designed over the procedural graph to compare the

GNN models against other state-of-the-art translational, semantic match-

ing and Random walk-based models.

1.3 Research Questions

We address the performance of Graph neural networks in the context of

the procedural knowledge graph as following research questions:
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• RQ 1: How do Graph Neural Network perform over a procedural

knowledge Graph when compared against other state of the art base-

line models?

• RQ 2: How does the GNN model configurations affect performance

against different representations?

• RQ 3: Among the GNN-based models, how does Multi-relational

models perform against homogeneous models??

1.4 Structure of this thesis

Chapter 2 of this thesis will go into the basic concepts behind Knowledge

Graphs, Knowledge Graph Embeddings and the short conceptual primer

of Graph Neural Networks. In the following Chapter, we discuss other top-

ics on Knowledge graph related to use in Manufacturing, embedding mod-

els available in literature. In the Chapter 4 we will discuss the Graph neural

network models which will be used over our procedural graph in our exper-

iments. Here, we would also describe the basic concepts and architecture

used for training these models. Post this, we would look at the evaluation,

experiment setup , metrics and the actual experiment results which we

would use to answer our research questions. Finally, we will summarize

our thesis with the conclusion drawn from the results and propose future

work which will fill in the gaps we found during our thesis.





2
Background

This section gives a short primer on basic concepts related to this thesis

work. In the first section, we discuss Knowledge graphs, their history and

a formal definition from the literature. We then talk about Knowledge em-

bedding and its parallels in natural language processing. Here we intro-

duce different knowledge embedding techniques but go into the details

in the Related work chapter. The last section of this chapter introduces

the Graph neural network, its structure and key concepts such as pooling

and message passing. The foundational concept of Graph neural networks

forms the basis of our models, which we discuss in the Methods chapter

of our thesis.

2.1 Knowledge Graphs

In recent years, Knowledge Graphs(KG) have emerged as a common-sense

method of representing structured knowledge in the form of an abstrac-

tion that encompasses data from different sources. It is a knowledge base

represented as a graph that provides ease of interpretation and inference

over facts. Knowledge pertaining to a specific domain can be represented

as Knowledge graphs that are then used as input in downstream tasks us-

ing machine learning models to get better prediction results.

2.1.1 A brief history of Knowledge Graphs

The concept of representing knowledge as a graph has a long history, span-

ning several decades. However, the term "Knowledge Graph" gained pop-

ularity after it was reinvented by Google in 2012 (EHRLINGER and WÖSS,

2016). Google introduced the term with the intention of improving the

7
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understanding of search queries by gaining insights into the meaning of

words. Instead of treating words as mere combinations of letters, the goal

was to represent them as real-world objects, such as people, movies, or

houses, with attributes and relationships to each other. By collecting in-

formation and mapping the relationships between these objects (entities),

Knowledge Graphs provide a better understanding of the connections in

the real world. This is particularly valuable because language can be am-

biguous and lead to misunderstandings, while Knowledge Graphs offer a

more precise and structured representation of knowledge.

Before the use of Knowledge Graphs as a structured methodology of stor-

ing real world facts, the commonly used methods of storing and handling

knowledge were Knowledge bases and Ontology.

According to GRUBER (1989), an ontology refers to a formal and explicit

representation of a conceptual framework. The term "ontology" is derived

from the field of philosophy, where it refers to a thorough and systematic

analysis of the basis of existence. In the context of AI systems, the notion

of existence is contingent upon its representation. Knowledge bases, con-

versely, pertain to repositories or databases that house structured infor-

mation and factual data on the world. They typically include a collection

of assertions and statements organized in a systematic manner(RUSSELL,

2016). While Knowledge Graphs and Knowledge Bases are concerned with

storing and representing knowledge, Ontologies primarily focus on defin-

ing the structure and vocabulary for knowledge representation.

EHRLINGER and WÖSS (2016) defines a knowledge graph as a combination

of Knowledge bases and a reasoning engine, with other essential charac-

teristics of collection, extraction and integration of information from dif-

ferent sources.

2.1.2 Formal Definition of Knowledge Graphs

Formally, a Knowledge Graph (KG) G can be defined as a directed labeled

graph that consists of a set of triples T , given by T ⊆ E ×R × (E ∪L ∪C ),

where:
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• E represents the set of resources referred to as entities. An entity can

represent a real-world object or an abstract concept. Each entity is

uniquely identified by a Uniform Resource Identifier (URI).

• R represents the set of relations or properties that define the connec-

tions between entities in the KG. Relations capture the relationships

or associations between entities.

• L represents the set of literals, which are values associated with enti-

ties or relations. Literals can take various forms such as text, dates,

numbers, images, or other data types.

• C represents the set of semantic types or classes of entities. Seman-

tic types classify entities into specific categories or classes based on

their characteristics or attributes.

In summary, a KG is a graph structure where entities, relations, literals,

and semantic types work together to represent knowledge. Entities rep-

resent real-world objects or abstract concepts, relations capture connec-

tions between entities, literals represent values associated with entities

or relations, and semantic types classify entities into specific categories.

This structured representation enables the modeling and organization

of knowledge in a comprehensive and interconnected manner (BISWAS,

2023).

Figure 2.1: Example of a Knowledge Graph extracted from DBpedia adapted from
BISWAS (2023)
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The facts in a Knowledge Graph are stored as a collection of triples which is

an ordered set containing (h,r, t ) where h, t εE and r εR. h denotes a head

or source entity and t denotes a tail or target entity. r denotes the relation-

ship between the two entities. The Triple (′Uni ver si t yo f C ambr i d g e ′,′ ci t y ′,
′C ambr i d g e ′) is an example from the figure 2.1 where directed edge en-

ables us to identify the source and target entities.

Here, we define Open World and Closed World Assumptions (HOGAN

et al., 2021). The concept of Open World Assumptions posits that the facts

present in a Knowledge Graph are considered to be true, but the facts that

are not observed within the graph may either be untrue or simply absent.

During an Open World Assumption training session, negative sampling is

carried out with heuristics that make assumptions based on a local closed

world. In the context of the Closed World Assumption, all further facts

that are not observable within the Knowledge Graph are postulated to be

entirely incorrect.

Categories of Knowledge Graphs

Knowledge Graphs can be categorized broadly as Open or Enterprise

Knowledge Graphs based on their availability to the public. Open KGs

are publicly available and can be accessed by everyone. These form the

basis of many research papers and open access search engines. Some of

the widely known Open KGs are DBpedia (BIZER et al., 2009) , Freebase

(BOLLACKER et al., 2008), YAGO (HOFFART et al., 2013), Wikidata (VRAN-

DEČIĆ, 2012), BabelNet (NAVIGLI and PONZETTO, 2012) and so on. These

KGs cover multiple domains offer multilingual lexicalizations extracting

their input data from either Wikipedia or are collated by active community

volunteers. Open KGs have also been published for specific domains such

as media (RAIMOND et al., 2014), life sciences (DIMITROV et al., 2020) and

travel (ZHANG et al., 2020) etc.

Enterprise Knowledge Graphs are typically owned by a company which are

used for their internal purposes or are used for their commercial use cases.

These graphs are constructed for industries which imbibe large amount of

connected data such as Web search (SHRIVASTAVA, 2017), commerce (KR-

ISHNAN, 2018), social networks (NOY et al., 2019) and are used as inputs
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to recommendation systems, search , advertising , business analytics, au-

tomation etc.

2.2 Knowledge Graph Embeddings

Knowledge Graph Embeddings are low-dimensional continuous vector

representation of entities and relations of a Knowledge Graphs (JI et al.,

2021). The objective of Knowledge graph Embeddings is to capture the

structure of the knowledge and the semantic information of the entities

and relations. The basic idea of the embeddings is inspired from the lan-

guage model concept of Word2vec.

2.2.1 Basics of Embeddings

A language model learns the probability of word co-occurrences from a

text corpus, based on the task either being the likelihood of a given word

based on a sequence of words or the probability of a word given a se-

quence (MANNING and SCHUTZE, 1999). In the context of Neural Lan-

gauge Models, embeddings are continuous low-dimensional representa-

tions of discrete variables, here words. By encoding the words in low di-

mensional representation space, semantically similar words appear closer

in the embedding space (BENGIO et al., 2000). When considering a vast

corpus, the most common method of representing categorical variables -

One hot encoding or the probabilistic approach of the Statistical Langauge

model, but this suffers from the curse of dimensionality.

Word2Vec

Word2Vec embedding is a popular technique that uses a shallow neural

network to predict the context of the word defined by a sliding window

of a given amplitude. MIKOLOV et al. (2013) defines two different architec-

tures to train these embeddings, namely Continuous Bag of Words(CBOW)

and Skip-gram. In CBOW, the current word is predicted from the available

context of words defined by the sliding words. It is important to note here

that the order of the context words does not have any influence on the

prediction process. On the other hand, Skip-gram takes the current word

as input and is trained to predict the context words. Skip gram is more
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efficient as it requires less training data and performs better at predicting

non-frequent words, whereas CBOW performs better with repeated words.

Figure 2.2: CBOW and Skip gram architectures from (MIKOLOV et al., 2013)

In Word2Vec training, the optimization problem revolves around adjust-

ing the word embeddings to maximize the likelihood of correctly predict-

ing the context words or a target word. This optimization problem is typi-

cally formulated as a maximum likelihood estimation (MLE) task. Given a

training corpus, the objective is to learn the word embeddings that maxi-

mize the probability of the observed context-target pairs. This probability

is calculated using the softmax function, which assigns higher probabili-

ties to the correct context words and lower probabilities to other words in

the vocabulary. To efficiently solve this optimization problem, Word2Vec

employs negative sampling. Instead of considering the entire vocabulary

for each context-target pair, negative sampling randomly selects a small

number of negative (non-context) words. The objective is to differentiate

the true context words from these negative samples.

With a significant amount of unannotated data, the Word2vec model

learns syntactic and semantic relationship between words. Model yields a

embedding vector equal to the size of the hidden layer for each word, with

remarkable linear relationships for example vec("ki ng ")− vec("men")+
vec("woman") = vec("queen").
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2.2.2 Parallels in Knowledge Graph Embeddings

Knowledge Graph Embedding methods, analogous to Word2Vec, generate

a vector for the elements of Knowledge graphs. These embeddings are

such that the latent semantic properties of the knowledge graph are cap-

tured: similar entities and similar relations will be represented by similar

vectors (PALMONARI and MINERVINI, 2020).

Figure 2.3: Embedding methods generating representations for entities and rela-
tions adapted from (PALMONARI and MINERVINI, 2020)

Some embedding methods directly inspired by the Word2vec are Deep-

Walk (PEROZZI et al., 2014) and node2vec (GROVER and LESKOVEC, 2016).

These methods extract sequences of nodes from the Knowledge Graphs

by performing random uniform walks. The sequences of nodes are fed

to CBOW or Skip-gram models as text to construct embedding vectors.

These embedding techniques treat the Knowledge graphs as homoge-

neous graphs with no differentiation between Entities or relations.

2.3 Knowledge Graph Embedding Techniques

There are four key aspects through which Knowledge Graph Embeddings

are generated:

• Representation space: This refers to the manner in which relations

and entities are represented. It encompasses various approaches

such as pointwise space, manifold, complex vector space, Gaussian

distribution, and discrete space.
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• Scoring function: It involves measuring the plausibility of factual

triples. Scoring metrics are typically categorized into distance-based

and similarity-based matching scoring functions.

• Encoding models: These models are employed to represent and

learn relational interactions. Current research in this area explores

different encoding models, including linear/bilinear models, factor-

ization techniques, and neural networks.

• Auxiliary information: This aspect involves incorporating addi-

tional information, such as textual, visual, and type information,

into the embedding methods.

A significant number of embedding models in the literature provide unique

combinations and techniques in the above-mentioned four aspects to pro-

pose a new modelling paradigm. Broadly, the Knowledge Graph Embed-

ding techniques can be divided as (primarily based on their variation in

the scoring functions): Translational Models, Semantic Matching Models

and Neural Network models (WANG et al., 2017).

Translational models are distance-based models where the translation dis-

tance between the head and tail in the triplet is assumed to be defined by

the relationship. Semantic matching models use similarity-based scoring

functions to measure the existence of the fact matching the semantics of

entities and relations. The neural network model implements the scoring

function mentioned above through their hidden layers and captures com-

plex patterns because of their non-linearity. More detailed information on

the techniques and the various models are explained in the Related Works

Chapter.

2.4 Graph Neural Networks

The ubiquitous nature of graphs as a choice of representation of many

real-world objects, including text and images, has led to the decade-long

research on the development and use of Graph data-specific deep neural

networks called Graph Neural Networks (GNNs).
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Graph Representation for Deep Neural Networks

Graphs, as explained before in the context of knowledge graphs, repre-

sent relations(edges) between a collection of entities(vertex or node). In-

tuitively, this representation does not lend itself to being compatible with

a neural network which generally takes in a rectangular array or a matrix

as input. The three components, i.e., entities, relations and connectivity,

must be defined as matrices to facilitate the application of neural networks

over graphs.

For the context of this discussion on Graph neural networks, we will call

entities as nodes and relations as edges as represented in the Graph. A

simple way to represent the entities or nodes is to have a matrix where the

i th row is the feature vector representing the nodei . The same method

can be adopted to represent the edges or relations (SCARSELLI et al., 2008).

Figure 2.4: Basic Input format for GNNs

However, the notion of representing graph connectivity can be more com-

plicated. A straightforward way is to represent the connectivity as an adja-

cency matrix, but there can be millions of nodes, and the number of edges

per node can be highly variable. This will lead to an adjacency matrix

which is very sparse and highly space inefficient.

Another problem with the use of adjacency matrices is that they can have

equivalent versions which can be obtained by permutation of the nodes,

and these different inputs can lead to varying results when processed

through a deep neural network which is not typically permutation invari-

ant (HAMILTON, 2020).
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One efficient way of representing the connectivity is to use adjacency lists

instead of matrices which contain only edges which exist in the graph.

Each element of this list will be a tuple with the indices of nodes i and

j , and k th position in the list would denote the edge ek .

2.4.1 GNN Layer

A GNN is an optimizable transformation on all attributes of a graph

(SANCHEZ-LENGELING et al., 2021). These attributes are nodes(vertices) V,

edges E and global context U. Global context attribute refers to all proper-

ties of a graph as a whole, for example, the number of nodes, longest path

and graph domain. A simple GNN layer uses a Multi-layered Perceptron

on each of the attributes separately. Therefore, MLP is applied to obtain

a learned vector over each node vector. We can stack these GNN layers

together, similar to neural network modules or layers.

Figure 2.5: A single layer of GNN. A graph input in the form of the 3 components-
Nodes(V), Edge(E), global context (U) are fed into the different MLP. Subscript n
indicates output of nth layer from SANCHEZ-LENGELING et al. (2021)

.

We can represent the output graph of a GNN with the same adjacency list

and the same number of feature vectors as the input graph because a GNN

does not change the connectivity of the input graph. However, because the

GNN modified each node, edge, and global-context representation, the

output graph has updated embeddings.
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Pooling or Aggregation for downstream tasks

Since individual components of the Graph are processed individually by

their respective MLPs, the information about a Neighbourhood or a Sub-

graph is stored separately in nodes and edges that belong to it. When im-

plementing graph-based downstream tasks such as node classification, an

aggregation or pooling operation is performed where the embeddings are

gathered from all the edges connected to the context node and the con-

text node itself. These undergo user-defined aggregation or pooling oper-

ations, yielding a new context node embedding that can be further used

for classification. Figure 2.6 shows the pooling operation, which is repre-

sented by ρEn−>Vn over the edges and context nodes.

Figure 2.6: Pooling of information from edges to nodes for node prediction from
SANCHEZ-LENGELING et al. (2021)

A similar operation can be done to improve edge level predictions. The

information on a binary edge can be obtained by pooling over the nodes

connected to these edges.

Figure 2.8 shows the end to end GNN pipeline in the case of a prediction

task. The graph components to a GNN block containing stacked GNN

layer is transformed to obtain learned embedding. The learnt embedding

can be further utilised in any downstream tasks. Any differentiable model

can simply take the place of the classification model c in our examples, or

a generalized linear model can be used to convert it to multi-class classifi-

cation.

It is important to note that in the simplest form of the GNN formulation,

the connectivity does not get used in any of the GNN layer. Each node
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Figure 2.7: Pooling of information from nodes to edges for edge prediction from
SANCHEZ-LENGELING et al. (2021)

Figure 2.8: An end-to-end prediction task with a GNN model from SANCHEZ-
LENGELING et al. (2021)

or edge is processed independently without considering connection until

the pooling operation is done to improve embedding for the downstream

prediction task.

2.4.2 GNN Message passing

In order to produce more accurate prediction results, it is intuitive that we

merge the concept of pooling into the GNN layer. This would mean that

the embedding learned through GNN layers with pooling will be aware

of the graph connectivity. GILMER et al. (2017) called this methodology as

message passage which is defined as the exchange of information between

edges and nodes and thereby influences the updating of the embedding

values.

As shown in the Figure 2.9 , for a specific target node, the neighbourhood

information is aggregated. In this case, the target node A aggregates the
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Figure 2.9: Message Passing - Target node aggregates messages from local neigh-
bourhood from HAMILTON et al. (2017)

information from the neighbourhood nodes B, C and D which in turn

have information aggregated and updated from their respective neigh-

bourhoods. This visualization represents a 2- layer version of message

passing model which is obtained by stacking two GNN layers. Let us now

formulate this idea.

For a node uεV , the hidden embedding h(k)
u is updated according to the

information in the neighbourhood N (u). The message passing update of

the target node u can be defined by :

h(k+1)
u =U PD AT E (k)

(
h(k)

u , AGGREG AT E (k)
(
{h(k)

u ,∀vεN (u)}
))

(2.1)

=U PD AT E (k)
(
h(k)

u ,m(k)
N (u)

)
(2.2)

where UPDATE and AGGREGATE are arbitrary differentiable function

such as neural networks and mN (u) defines the aggregated ’message’ from

local neighbourhood N (u). The UPDATE function combines the previous

embeddings h(k−1)
u and the message m(k)

N (u) of node u to obtain the new

embeddings. The AGGREGATE function takes a set of neighbourhood

embedding. The GNN designed this way are permutation equivariant.

The equations 2.1 and 2.2 define in an abstract manner the framework

which defines GNN layer. A more implementable version of the equations

is to instantiate the UPDATE and AGGREGATES with Weights and summa-

tion of hidden states.

The basic GNN message passing can be defined as follows:
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h(k)
u =σ

(
W k

sel f h(k−1)
u +W k

nei g h

∑
vεN (u)

hk−1
v +b(k)

)
(2.3)

where W k
sel f is the trainable weights on the node, W k

nei g h are the weights

applied over the neighbourhood. σdenotes the element-wise non-linearity

while b(k) denotes the bias term. Other sophisticated methods which will

be defined in our approach will apply a modified and more effective ver-

sion of the UPDATE and AGGREGATE functions.
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Related Work

3.1 Knowledge Graphs in Manufacturing

Research on using knowledge graphs in manufacturing has significantly

increased in recent times. Most Knowledge Graphs were modelled by

domain experts in the form of an ontology and infused with data about

manufacturing. The primary objective of these Knowledge Graphs is to

integrate data from various sources and build Heterogeneous models

(BUCHGEHER et al., 2021). It integrates contextual data, such as equip-

ment configuration, with operational data, such as process data and

events (DUAN and CHIANG, 2016). AGGOUR et al. (2019) explore the ap-

plication of Knowledge graphs in the field of Additive Manufacturing.

They propose the utilization of a federated multi-modal big data storage

platform to construct Knowledge Graphs, which serve as the underlying

structure for a data analysis platform. HE and JIANG (2019) define Knowl-

edge graphs storing manufacturing knowledge and production problems.

A platform constructed on top of the Knowledge graph is used to link

production problems to related manufacturing knowledge. In the case of

KATTEPUR and P (2019), an autonomous system that utilizes knowledge

graph queries for robotic action planning. The system leverages the knowl-

edge graph to enable the robot to autonomously generate action plans

based on its understanding of the environment and task requirements.

A similar kind of automation is proposed by NAYAK et al. (2020), where

knowledge graphs are utilized to generate test cases by leveraging the se-

mantic relationships and dependencies between software artefacts. The

knowledge graph represents the underlying domain knowledge and cap-

tures the relationships between various elements, such as requirements,

design specifications, and code components.

21
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In all of the methods mentioned above, knowledge graphs are used to

depict foundational knowledge and are incorporated into compact vector

representations that can be used to extract rules BORDES et al. (2013a),

WANG et al. (2017) for easier integration into various downstream tasks

and learning systems PORTISCH et al. (2022). While knowledge graphs

often contain factual and conceptual knowledge, such as terminology,

classification, and generalizations KRATHWOHL (2002), NOY et al. (2019),

research on procedural knowledge, which encompasses techniques, their

application, and contextual understanding, has been limited. This type of

knowledge is heuristic in nature and is typically acquired through years of

experience and expertise. NORDSIECK et al. (2021) and NORDSIECK et al.

(2022a) provide the basis for data-based extraction of procedural knowl-

edge from production data. NORDSIECK et al. (2021) showcases a method-

ology of dealing with (re-)parameterization in the manufacturing process

to produce products which satisfy certain quality criteria. NORDSIECK

et al. (2019) further presents the idea of modelling patterns for procedural

knowledge graphs capable of representing knowledge at different levels of

abstraction.

3.2 Knowledge Graph Representations

While Knowledge Graphs (KGs) are efficient in representing structured

data, their symbolic nature often poses challenges when it comes to ma-

nipulation. To address this issue, a fundamental approach is to embed the

entities and relations of a KG into continuous vector spaces. This embed-

ding process aims to streamline manipulation tasks while still maintaining

the intrinsic structure of the KG intact. The embedding of the entities and

relations are in themselves used in different kinds of task such as Knowl-

edge Graph completion (BORDES et al., 2013b) (WANG et al., 2014), relation

extraction(WESTON et al., 2013), entity classification(NICKEL et al., 2011)

and entity resolution(GLOROT et al., 2013). Knowledge Graph embedding

workflow typically has three major steps : (i) representation of relations

and entities, (ii) implementing a scoring function, and (iii) learning the

representations. Different embedding techniques have been defined by

varying approaches to each of these steps.
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Translational Models

Translational models are a popular approach in Knowledge Graph Embed-

dings (KGE) that aim to represent entities and relations in a continuous

vector space. These models capture the translation-based assumption,

which states that the relationship between entities in a KG can be mod-

elled as a translation operation. TransE (BORDES et al., 2013b) is a widely

used translational model that represents relations as translation vectors

between entity embeddings. The model assumes that the relation vector

added to the head entity embedding is close to the tail entity embedding.

(a) TransE (WANG et al., 2017)
(b) RotatE models r as a rotation in complex
plane (WANG et al., 2017)

Other extensions (WANG et al., 2014), (LIN et al., 2015) extend TransE

model to accommodate complex relations using relation-specific hyper-

planes or projection matrices. In BoxE (ABBOUD et al., 2020), each relation

is represented as a hyperrectangle (or box) in the embedding space. The

head and tail entities are also represented as points in the same space.

The model assumes that the relation boxes enclose the points represent-

ing valid entity pairs for that relation. In the case of RotatE (SUN et al.,

2019), each entity and relation in the knowledge graph is represented as

a complex-valued vector. The key idea behind RotatE is to model the

relation between entities as a rotation operation in the complex plane.

The rotation is applied by multiplying the head entity embedding by a

complex-valued rotation vector associated with the relation, aiming to

align it with the tail entity embedding.



24 CHAPTER 3. RELATED WORK

Semantic Matching Models

Semantic Matching models are another popular approach in Knowledge

Graph Embeddings (KGE) that aim to capture the interactions between

entities and relations using semantic similarity. These models enable

more expressive representation of complex relationships in a KG. RESCA

L(NICKEL et al., 2011) represents a relation r as a full-rank d ×d matrix M

and entities as d- dimensional vectors e. DistMult (YANG et al., 2014) is a

simplified version of RESCAL that assumes diagonal matrices for relations.

It models the interactions between entities and relations using a bilinear

product that results in a diagonal matrix.

Figure 3.2: DistMult (WANG et al., 2017)

ComplEx (TROUILLON et al., 2016) extends DistMult by utilizing complex-

valued embeddings to capture more expressive interactions between en-

tities and relations. It represents both entities and relations as complex-

valued vectors and computes the interactions using the conjugate dot

product. ComplEx can effectively model asymmetric and symmetric rela-

tions as well as the compositionality of relations.

Neural network based models

Neural network-based models for Knowledge Graph (KG) embeddings uti-

lize neural network architectures to learn continuous vector representa-

tions of entities and relations in KGs. These models leverage the expres-

sive power of neural networks to capture complex patterns and interac-
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tions in the graph structure. Linear / bilinear models can also be modeled

using neural networks. Generally entities and relations are fed to neural

network which computes a semantic matching score. One such example

is ConvE DETTMERS et al. (2018) which employs a 2D convolutional neu-

ral network architecture to capture the local neighborhood information

of entities and relations. It operates on the 2D matrix representation of

triples (head entity, relation, tail entity) and uses convolutional filters to

learn feature maps. ConvE combines these feature maps to generate en-

tity and relation embeddings. SimplE is a model that incorporates both

forward and backward embeddings for relations in KGs. It uses two sets

of embedding vectors to represent relations in both directions. By consid-

ering the embeddings of head and tail entities along with these relation

embeddings, SimplE captures different types of relation patterns.

Other Models

A few Knowledge Graph Embedding models use language modelling ap-

proached to learn representations of vertices in graph and are usually used

over homogeneous graph methods. Models like DeepWalk (PEROZZI et al.,

2014) and Node2vec (GROVER and LESKOVEC, 2016) which perform ran-

dom walks on a neighbourhood and use language models embed these

paths. These approach mainly preserving the network neighbourhood of

nodes without distinctions between the type of nodes or relations.

Figure 3.3: DeepWalk captures the structure of the graph in Two Dimensional
Embedding space, from (PEROZZI et al., 2014)

RDF2Vec(RISTOSKI and PAULHEIM, 2016) is one such approach that aims

to learn continuous vector representations (embeddings) of entities and

relations in a Knowledge Graph (KG) using the RDF (Resource Descrip-
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tion Framework) graph structure. It leverages techniques from the field

of word embeddings to capture semantic relationships and similarities be-

tween entities and relations in the KG.The RDF2Vec approach follows a

similar idea to word2vec, a popular method for learning word embeddings

from large text corpora. In word2vec, word embeddings are learned based

on the co-occurrence patterns of words in sentences. Similarly, RDF2Vec

learns embeddings by considering the co-occurrence patterns of entities

and relations in the RDF graph.
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Methods

4.1 AIPE Dataset

AIPE Dataset consists of procedural data from the Fused-diffusion process

explained earlier in Chapter 1. Similar to most manufacturing use cases,

procedural knowledge is implicit in the parameterization of the machinery

for producing quality products. The Expert operator sets parameters for

the additive manufacturing technique to print models by squeezing the

melted raw material through a nozzle to deposit it layer-wise. As such, the

knowledge can be described as a relationship between the process input

parameters set for the manufacturing process and then the quality char-

acteristics of the product obtained. This process usually involves how and

in what order the expert has tweaked the process parameter to obtain the

required best product mitigating the quality defects in each iteration. In

total, there are 46 process parameters and 13 quality features represent-

ing various production defects. These process parameters have distinct

ranges, while the quality features are of two types: boolean values and or-

dinal features ascending from zero. The dataset consists of approximately

500 such process iterations of process parameters and associated quality

characteristics.

4.1.1 AIPE Dataset Representation

NORDSIECK et al. (2022a) propose different methods of describing opera-

tor knowledge in the form of knowledge graphs. These methods provide

different levels of abstraction in the representations. Lower levels of ab-

straction contain just interacting entities such as process parameters and

27
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quality characteristics, while higher abstraction adds more information,

like including parameter ranges and iteration dependencies.

The different levels of abstraction for representing the operator knowledge

can be described as:

Unquantified rules: It is the highest level of abstraction which represents

the relation ’implies’ between a quality characteristic and a process pa-

rameter .i.e the process parameter p needs to be adjusted implied by the

quality characteristics q. The triples in this knowledge graph can be rep-

resented by rη = (q,< i mpl i es >, p), pεP , qεQ where P is the set of all

process parameters and Q is set of all quality characteristics.

Figure 4.1: Graphical representation of rη from NORDSIECK et al. (2022a)

Quantified Conclusion: This representation would add more information

as to how much the process parameter p would need to be adjusted to

attain better quality from the current quality characteristics q .

A fact in this knowledge graph could be represented be with a edge

weight νεR quantifying the degree of adjustment or could be represented

as a chained binary representation like rρ̂,ch = (q,< i mpl i es >, (ν,<
quanti f i es >, p)). The chained binary representation can be modelled

Figure 4.2: Graphical representation of rρ̂,r el from NORDSIECK et al. (2022a)

two different ways. One way is to treat the quantification as an entity but

this would impact the semantic nature of the p and q . This causes the

relation to become a ternary relation with three entities used to represent

a single relationship as shown in the Figure 4.3.

This representation essentially cause indirection in which either p or q are

not directly connected to the quantification. The alternative would be to
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Figure 4.3: Graphical representation of rρ̂,ch,e from NORDSIECK et al. (2022a)

maintain the direct unquantified connection but include connection to

the quantification ν from both process parameter and quality characteris-

tics as the modified representation rρ̂,ch,e,η as shown in the Figure 4.4.

Figure 4.4: Graphical representation of rρ̂,ch,e,η from NORDSIECK et al. (2022a)

Another representation method is to represent the n-ary representation as

proposed by (NOY et al., 2006). This involves introducing an additional

node which signifies the relation between p and q and then connecting

the quality characteristic, process parameter and quantification to the re-

lation entity as shown in figure 4.5.

:
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Figure 4.5: Graphical representation of rρ̂,r ei ,e,η from NORDSIECK et al. (2022a)

4.2 Graph Convolution Networks

Convolution is a concept which essentially belongs to the image domain.

A filter or kernel, a matrix with random weights, performs element-wise

multiplication with the input pixel values. This filter slides over the entire

image using a user-defined protocol, obtaining information from all the

pixels in the image and thereby learning its weights. This process is called

convolution (LI et al., 2021).

A convolution layer may contain many such filters defined by the user to

convolve over the image to learn its weight to capture patterns in the im-

age corpus. Since the same filter or kernel is used for all the different parts

of the image, the concept of weight or parameter sharing is implemented.

Figure 4.6: The process of convolution from MAYACHITA (2020)
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Similarly, it is also a common practise to interpret images as a connected

graph where each pixel is a node connected to its neighbouring pixels

through an edge. Each node can have additional information such as the

RGB values embedded in it.

Figure 4.7: Interpreting image as graph from HAN et al.

HAN et al. shows how the graph interpretation enables you to connect

nodes not only using euclidean adjacency but also using the similarity of

images. It also allows you to segment the image by classifying nodes be-

longing to the same object.

Corollary to the two definitions of images as graph and convolution for

images, a convolution operation can be used over the neighbourhood in a

graph structure. The use of convolution operation over graphs is called

graph convolution. Like a Convolution neural network (CNN), a graph

convolution network (GCN) model learns features for each node, gather-

ing information from the neighbouring nodes using the convolution oper-

ation. Weights or parameters are shared across different neighbourhoods

in the graphs. Although similar in concept, GCN has few features that

suit the permutation equivariance and non-euclidean nature of the graphs

since the number of edges and nodes in a neighbourhood may or may not

vary or be in a particular order, unlike an image (ZHANG et al., 2019).

Let us consider a Graph G = (V ,E) where V and E are a set of Vertices

(nodes) and Edges respectively. The input to GCN can be formalised as

follows :

• Input feature matrix X: feature vectors of length D for node nεV .

Therefore, the input feature matrix X is of dimensions V ×D .
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• Adjacency Matrix A: representing the connection in the graph struc-

ture in the matrix form.

A simple form of the neural network layer wise propagation rule for GCN

can be defined as follows

H (k+1) = f (H (k), A) =σ
(

AH (k)W k
)

(4.1)

where H (0) = X , H K = Z , Z is the output(embedding matrix) , K is the num-

ber of layers, W (k) is the weights in the k-th layer and σ is a non-linear

activation functin like ReLU.

There are a few limitations to the above-mentioned simplistic formulation:

multiplication with the Adjacency matrix(A) means summing up the node

features of the neighbourhood, but the node features already existing in

the node are forgotten. We need to consider a self-loop condition which

can be fixed by adding an identity matrix to A.

Another limitation is the need to normalize the feature vectors since the

Adjacency matrices are not typically normalized. Therefore using D−1 A,

where D is the Diagonal node degree matrix, fixes the problem by taking

an average of neighbourhood node features. As proposed by KIPF and

WELLING (2016a), a symmetric normalization method is used instead of

simple averaging. The new propagation rule now obtained after changes

are as follows :

H (k+1) = f (H (k), A) =σ
(
D̂−1/2 ÂD̂−1/2H (k)W k

)
(4.2)

with Â = A + I , where I is the identity matrix and D̂ is the Diagonal Node

degree matrix of Â.

The same matrix form of the propagation rule can be formalized in vector

form as :

h(k+1)
u =σ

( ∑
vεN (u)

1

cuv
hk

v W (k)

)
(4.3)

where v indexes the nodes in the neighbourhood of u N (u),cu,v is constant

obtained from D̂−1/2 ÂD̂ for node u and v.

With this configuration of the GCN update rule, we obtain a very stable

model in practice owing to the normalization method and an appropriate
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orthogonal weight initialization such as Glorot initialization. It outputs

meaningful embeddings which reflect the local neighbourhood structure

whose similarity or dissimilarity can be observed in their distances in the

embedding space.

In our thesis, we will use the Graph convolution network architecture as an

example of a homogeneous graph neural network that does not differenti-

ate between edge types. We will also include multiple variants of differing

numbers of layers to increase the hops done to aggregate the embedding

values during the training process.

4.3 Relational Graph Convolution Network (RGCN)

As discussed in the last section, GCN does not discriminate different edge

types between connecting nodes. One of the crucial aspects of Knowledge

Graph Embedding is to handle the multi-relational nature of it. Remem-

ber the figure 2.3, nodes ′W ashi ng tonDC ′ and ′Uni tedSt ates′ had two

different relations between them - ′capi t al ′ and ′countr y ′. In this case,

the GCN would be unable to discriminate between the two relations and

would not have any embeddings to signify the relations. Relational Graph

Convolution solves this problem by learning a relation feature vector for

each relation type in the Knowledge graph (SCHLICHTKRULL et al., 2018).

While it distinguishes between the two relations ′capi t al ′ and ′countr y ′,
it also learns meaningful embeddings, which would imply that some rela-

tions of the same type are closer to each other than others of a different

type in the embedding space.

For the purpose of defining the RGCN architecture(THANAPALASINGAM

et al., 2022), we expand the definition of the Graph which was used for

GCN and add another element R. We consider Graph G = (V ,E ,R) where

V is the set of all nodes or vertices, E is the set of all edges and R is the set

of all edge labels.

The layer-wise propagation rule for the Relational Graph Convolution Net-

work would extend the graph convolutions to include directions of the
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edges and message passing for different relations differently. Therefore

4.2 would be modified as follows :

H (k+1) =σ

(
R∑

r=1
D̂−1/2

r Âr D̂−1/2
r H (k)W k

r

)
(4.4)

with Âr = Ar + I , where I is the identity matrix, Ar is the Adjacency matrix

for relation r εR, D̂r is the Diagonal Node degree matrix of Âr and W k
r is

the weights for relation r .

The same matrix form of the propagation rule can be formalized in vector

form as :

h(k+1)
u =σ

(
R∑
r

∑
vεN r (u)

1

cu,r
hk

v W k
r +W k

0 h(k)
u

)
(4.5)

where v indexes the nodes in the neighbourhood of u N r (u),cu,r is con-

stant obtained from D̂−1/2
r Âr D̂r for node u and v, W k

0 are weights for self

loop edge (THANAPALASINGAM et al., 2022).

Relational Graph convolution networks are an example of a heteroge-

neous graph neural network we will use in our thesis. Although the most

common and vital relation in our use case is the ’implies’ relation between

the process parameter and quality characteristics, other relation types like

’quantify’ or ’quantified by’ exist in the knowledge graph. We would like

to see if using RGCN is helpful in the representations with more than one

relationship type.

4.4 Graph Attention Networks

Attention is a concept introduced in the domain of Language models by

VASWANI et al. (2017). The idea that some parts of the text sequence are

more important for predicting a word than others gave rise to the concept

of attention. Attention provides coefficients to weigh the importance of

words in a text sequence. This idea gave rise to a compelling model called

Transformers. One of the benefits of using the attention-based mecha-

nism was its ability to handle inputs of different sizes. When attention

is computed from a single sequence of text, it is commonly known as self-

attention.

Graph attention networks(GANs) (VELIČKOVIĆ et al., 2017) combine the

concept of GNNs and attention. The attention mechanism allows us to
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Figure 4.8: Update graph node embedding using RGCN model from
SCHLICHTKRULL et al. (2018)

learn an embedding using GNNs but with attention to specific neighbours

who might be more important than others. This model is highly paralleliz-

able owing to the simplicity of the self-attention mechanism and can be

applied to varying degrees of neighbours of a node.

Let us now consider one of the hidden layer of the GAT network. The input

to our layer is a set of node features, h =~h1,~h2, ....~hN ,~hiεR
F , where N is the

number of nodes and F is the number of features in each node. Outputs

of the layer can be formulized as h′ = ~h′
1,~h′

2, ....~h′
N , ~h′

iεR
F ′

,. F ′ signifies

that the output features may potentially be of a different cardinality.
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Now the shared self-attention operation is performed over these nodes

can be :

Ei , j = a(W~hi ,W~h j ) (4.6)

where E is the logit computed by attention mechanism a : RF ′ ×RF ′ → R

and indicates the importance of node j ’s features to node i . The atten-

tion mechanism can be further restricted to include the neighbourhood

of node i where j ε Ni , Therefore the attention function would look like:

αi , j = so f tmax j (Ei , j ) = exp(Ei , j )∑
kεNi

exp(Ei ,k )
(4.7)

This step would be called masked attention where the attention mecha-

nism is restricted to the neighbourhood thus injecting the graph structure

into the computation. The above equation can be now fully expanded by

combining the 4.6 and 4.7 as follows (VELIČKOVIĆ et al., 2017):

αi , j = so f tmax j (Ei , j ) = exp(Leak yReLu(~aT [W~hi ||W~h j ]))∑
kεNi

exp(Leak yReLu(~aT [W~hi ||W~hk ]))
(4.8)

where attention a is represent as a single layer feed forward network and ||

is a concatenation operation.

Figure 4.9: Left: attention mechanism used. Right: computation of attention
coefficient α and aggregating it to obtain the final output node features from
VELIČKOVIĆ et al. (2017)
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The normalized attention coefficient obtain from 4.8 is used to perform

a weighted linear aggregation of node features in the neighbourhood to

obtain the final feature of the node after applying the non-linearity.

~h′
i =σ

( ∑
jεNi

αi , j W~h j

)
(4.9)

For a more stable learning process for the self attention mechanism, we

can used the multi-head attention technique suggested by VASWANI et al.

(2017). Using K independent self attention mechanism and concatenating

the resulting output features would transform the equation 4.9 as follows:

~h′
i =

Kn

k=1

σ

( ∑
jεNi

αk
i , j W k~h j

)
(4.10)

4.4.1 Extending GAT to Relational GAT

An extension of the Graph attention networks is to accommodate the

multi-relational nature of Knowledge Graphs (BUSBRIDGE et al., 2019).

Consider the same formal definitions as GAT. The input to our layer is a

set of node features, h = ~h1,~h2, ....~hN , ~hiεR
F , where N is the number of

nodes and F is the number of features in each node. Outputs of the layer

can be formulized as h′ = ~h′
1,~h′

2, ....~h′
N , ~h′

iεR
F ′

,. F ′ signifies that the

output features may potentially be of a different cardinality. Here,we also

include the set of relation R as input to the layer.

To differentiate between the hidden features influenced by the various re-

lation, we introduce an intermediate representation where ~g (r )
i εRF ′ for re-

lation r εR. Therefore the update rule to the intermediate relation based

representation in the form matrices can be defined as follows:

G (r ) = HW (r )εRN×F ′
(4.11)

where G (r ) = [~g (r )
1 ~g (r )

2 ...~g (r )
N ] is the intermediate representation feature ma-

trix and W (r )εRF×F ′
is the learnable weights for the relation r and H =

~h1~h2....~hN is node feature matrix. The attention mechanism which was

defined in the Equation 4.6 can be now modified to include the relational

aspect as follows :
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E (r )
i , j = a(g (r )

i , g (r )
j ) (4.12)

E (r )
i , j is the logit output of the self attention mechanism for the relation r.

This is further normalized using a softmax over the neighbourhood node

features to obtain the attention coefficientα independently for each of the

relations r .

α(r )
i , j = so f tmax j ,r (E (r )

i , j ) =
exp(E (r )

i , j )∑
kεNi

exp(E (r )
i ,k )

(4.13)

Figure 4.10: RGAT model BUSBRIDGE et al. (2019)

where Ni is the neighbourhood of node i , α(r )
(i , j ) is the attention coefficient

for node i and j with respect to relation r. Combining the attention mech-

anism for each relation r and multi head attention mechanism explored in

Equation 4.10, the propagation rule can be modified as follows:

~h′
i =

Kn

k=1

σ

(∑
r εR

∑
jεNi

α(r,k)
(i , j )~g

(r,k)
j

)
(4.14)

where K is the number of attention heads. The propagation rule aggre-

gates all the relation specific features in the neighbourhood. This model

is called Relational Graph attention network(RGAT) (BUSBRIDGE et al.,

2019).

RGAT is another example of a heterogeneous network other than the

RGCN model. In our thesis, we will use RGAT as a comparison against
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the RGCN model to understand if the relative importance of the relation

types has any impact on the performances of the model. Similar to GCN

and RGCN, we would use multiple variants with differing layers to under-

stand if the model performance increases with propagation depth.

4.5 Encoder-Decoder Model for Neighbourhood Recon-
struction

The goal of learning node embeddings is to encode the node information

as a dense vector which would represent the node’s position in the knowl-

edge graph and the other nodes connected to it in the neighbourhood.

The task is to translate the relative positions of the graph nodes in the

knowledge graph to the distance between them in the embedding space.

For the purposes of training the node, we employ an Encoder-Decoder

model where an encoder maps the node information into a low-dimensional

vector and a decoder, depending on the task, can be used to decode a

neighbourhood or a node label. The decoding neighbourhood task is the

link prediction task in which the similarity of a pair of nodes in the em-

bedding space is used to decode if an edge exists between the pair in the

original graph(HAMILTON, 2020).

Figure 4.11: Encoder encodes the node vi to obtain an embedding zi which can
be used by the decoder to either decode neighbourhood or node label

Now let us formalize the encoder function. An encoder maps the node

vεV to embeddings zvεR
d . In the simplest of terms the encoder can be

defined as follows:

E NC (v) = Z [v] (4.15)
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where ZεR|V |×d is an embedding matrix and Z [v] denotes the embedding

vector for node v.

In the case of the decoder, we will only consider the neighbourhood recon-

struction task for our thesis. A decoder receives the embeddings as input

and tries to predict the neighbouring nodes. A typical decoder model is

pairwise, i.e. it takes in a pair of node embeddings and tries to predict

the relationship or similarity. Therefore a pairwise decoder would be ap-

plied for a pair of embeddings (zu , zv ) to predict the existence of an edge

between the nodes u and v . This can be formally defined as follows:

DEC (E NC (u),E NC (v)) = DEC (zu , zv ) (4.16)

The goal is to minimize the reconstruction loss in this encoder -decoder

model so that

DEC (zu , zv ) ≈ S[u, v] (4.17)

where S[u, v] is a graph based similarity measure. The reconstruction loss

L over the set of training node pairs (u, v) can be defined as :

L = ∑
(u,v)εD

l (DEC (zu , zv ),S[u, v]) (4.18)

where is the loss function capturing the difference between the embed-

ding based similarity DEC (zu , zv ) and the graph based true values S[u, v].

Inner Product Decoder

KIPF and WELLING (2016b) defines Inner Product Decoder for unsuper-

vised learning model -Variational Graph autoencoder where the dot prod-

uct between a pair of embeddings is defined as a measure of similarity

between the nodes.

DEC (zu , zv ) = zT
u zv (4.19)

Decoder for Multi Relational Data

The Inner product Decoder defined earlier does not take into account

the multi-relational nature of the input knowledge graph. The earliest
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method which realises learning multi relational embeddings is called

RESCAL (NICKEL et al., 2011). The decoder is defined formally as :

DEC (u,r, v) = zT
u Rr zv (4.20)

where Rr εR
d×d is a learnable matrix specific to a relation r εR. This de-

coder is not generally used because it is computationally expensive and

this can make it undesirable in the case of large graphs.

Popular Translation Embedding models like TransE, RotatE can them-

selves serve as decoder for a Graph neural network based encoders. The

scoring function of these translational models are used as decoder func-

tion. For example, a TransE decoder as :

DEC (u,r, v) =−||zu + rr zv || (4.21)

where rr is the relational vector.

Similarly other semantic models like DistMult can also be used as decoder.

DistMult is an updated version of RESCAL where we learn relation vec-

tors rather than matrices which makes it much more efficient that RESCAL.

The decoder function of DistMult can be defined as :

DEC (zu ,r, zv ) =
d∑

i=1
zu[i ]× rr [i ]× zv [i ] (4.22)

where d is the embedding dimension.

This thesis uses the Inner product and DistMult decoders for our Graph

neural network-based models. Since the GCN model is not a relational

model, the inner product decoder is used, while the DistMult model will

be used with the RGCN and RGAT model during node embeddings train-

ing.

We will also use a negative sampling technique to facilitate efficient train-

ing and generalizability. The most common approach for negative sam-

pling is to use a uniform distribution over all nodes in the graph to gener-

ate ’negative’ samples, i.e., triples which do not exist in the graph. The loss

function defined for this case would be a binary cross-entropy loss as:
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L = ∑
(u,r,v)εE

(
−log (σ(DEC (zu ,r, zv )))− ∑

(vn )εP(n,u)
[l og (σ(−DEC (zu ,r, zv )))]

)
(4.23)

where Pn,u is a small set of nodes obtained from the negative sampling

distribution.
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Experiments and Evaluation

5.1 Experimental Setup

For the purposes of the training process of learning the node embeddings

in the knowledge graph, we employ the Knowledge completion or link

prediction task for this purpose. A typical Knowledge completion task in-

volves training the embedding model on a set of nodes V and a set of edges

Etr ai n , which is a subset of all the edges E in the knowledge graph. This

task aims to use the trained embeddings to predict the edges that were left

out of the training process.

We compare our Graph Neural Network model with some of the state-of-

the-art Translation, Semantic Matching, and Random walk-based models.

The translational model used in the experiment are TransE (BORDES et al.,

2013a), RotatE (SUN et al., 2019)and BoxE (ABBOUD et al., 2020). For the

Semantic matching models, we have the DistMult(YANG et al., 2014), Com-

plEx (TROUILLON et al., 2016) models. KRISTIADI et al. (2019). In the case

of Random walk-based model, we use the RDF2Vec model for learning our

node embeddings.

For the simplicity and ease of comparison, we chose to train 46-dimensional

embeddings( similar number to the number of process parameters). We

use the pyKEEN library (ALI et al., 2021) for the implementing the Trans-

lation and semantic model for our experiment. The RDF2Vec implemen-

tation in the pyRDF2Vec (VANDEWIELE et al., 2022) was used with our

other embedding models. We used a default configuration of Adam opti-

mizer, learning rate of 4× 10−4 for the link prediction task. The number

of epochs—TransE: 400, ComplEx: 1000, RotatE: 700, DistMult: 200, BoxE:

43
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1500 and RDF2Vec: 1000—was chosen individually for each embedding

method by inspecting its convergence on the train set.

GNN experimental Setup

As discussed earlier in chapter 4, we evaluate three popular Graph neural

network models-based embeddings in the context of procedural knowl-

edge graph in the manufacturing scenario. For the experiments, Graph

neural networks are set up in the following manner:

• Graph Convolution Networks(GCN) (KIPF and WELLING, 2016a):

Graph neural networks variant that does not differentiate between

edge types. As explained earlier, the Decoder used for the GCN train-

ing is an Inner Product Decoder.

• Relational Graph Convolution Networks(RGCN) (SCHLICHTKRULL

et al., 2018): Multi-Relational Graph neural networks variant which

differentiates between different edge types. We use the DistMult-

based decoder for RGCN because it can handle the multi-relational

nature of our input embeddings

• Relational Graph Attention Networks(RGAT) (BUSBRIDGE et al.,

2019): Multi-Relational Graph neural networks variant which has

an attention mechanism for each relation. Similar to RGCN, we will

use a DistMult decoder.

Please note that we use three different variations of these networks with

different layers-1,2 and 3. As explained in the conceptual review of GNN

and GCN, the layers in a GNN model signify the number of hops taken

from the source node in the neighbourhood for the aggregation and up-

dation of the GNN message passing process (see Figure 2.9). Each varia-

tion will be sub-scripted with the layer number to establish the number of

layers used in these versions like GC N1 or RGC N2 etc. Pytorch Geomet-

ric library was used to implement these GNN models (FEY and LENSSEN,

2019).We explain the purpose of this variant when we discuss the evalua-

tion results in the context of the research questions.
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5.2 Evaluation

5.2.1 Subgraph Embeddings and Matches@K

Metrics which are commonly used to evaluate the embeddings in a link

prediction setting are AMRI and hits@K. However, these are not suited

for predicting parameters for the next iteration in procedural knowledge

graphs. NORDSIECK et al. (2022b) proposes that for a downstream task

such as choosing the fitting parameters for the process, the parameters

adjusted for a quality characteristic should be similar in the embedding

space and the knowledge graph. The Metric proposed is analogous to

hist@k and is based on the overlap between the k closest quality charac-

teristics in the graph and embedding space.

A sum-based aggregation of a subgraph of the Knowledge representation

considering different quality characteristics as the focal node is calculated.

Let us consider individual node embedding vectors as z for node v , with

vεSn , where Sn is the subgraph corresponding to a quality characteristic q .

The Subgraph Sn is determined for each quality characteristic depending

on the knowledge graph representation, i.e., the number of hops required

to cover process parameters connected to a quality characteristic in each

representation. Therefore for an unquantified rules representation as seen

in Figure 4.1, only a single hop would fetch all process parameters associ-

ated with a quality characteristic, but the propagation depth would be 2 in

the case of the representation in Figure 4.4.

Figure 5.1: Subgraph is determined by the quality characteristic q as the starting
node and node embedding in the subgraph are aggregated to obtain a subgraph
embedding from NORDSIECK et al. (2021)

The aggregation on the Subgraph can be done as two alternatives- one

with the head node( quality characteristics q) included or not included. If
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the head node is not included, the Subgraph aggregation can be calculated

as follows:

z h̄
S = ∑

vi ,v j εS
z j ⊗D(zi , z j ) (5.1)

where vi , v j are the pairs of head and tail nodes resulting from graph prop-

agation and D(zi , z j ) is the distance between node embeddings of vi and

v j . However the head node can also be included and therefore the embed-

ding of head node z0 is added to obtain the following equation:

zh
S = z0 +

∑
vi ,v j εS

z j ⊗D(zi , z j ) (5.2)

Subgraph embeddings are used to identify the closest quality characteris-

tics in the embedding space for a given quality characteristic, and a set of

quality characteristics ranked by similarity is obtained. Similarly, the num-

ber of parameters shared between two quality characteristics in the Knowl-

edge graph determines their closeness in the Knowledge graph. These two

ordered sets of quality characteristics nodes are matched for the top k val-

ues, and the values obtained are divided by the k value to obtain the met-

ric in the range of [0,1]. The choice of k is essential and highly domain

and dataset dependent. In our case, k=3 is an ideal case to measure the

performance of each of these models. With higher k values, the similarity

measure plateaus to a constant value for all embedding types, which is not

ideal.

Calvo for Comparison

In order to compare the Matches@k results from various embedding mod-

els, we need to perform some significance tests to ascertain if the mod-

els’ performance can be differentiated from the values obtained. Null hy-

pothesis significance test (NHST) has been usually used as a method for

model comparison but has been determined to be flawed in its interpreta-

tion (BENAVOLI et al., 2017). One of the assumptions that two models are

necessarily equivalent if they are not different statistically is patently false.

Such assumptions based on other parameters, such as p-value and confi-

dence intervals whose values are arbitrarily chosen in the literature, make
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it unreliable. CALVO et al. (2019) proposes the use of a Bayesian Plackett-

Luce model, which is a probabilistic model to rank algorithms or, in our

case, the embedding methods, i.e, the probability of each algorithm be-

ing the best when compared against others over a significant number of

sample values(metric values from different iterations). For the purposes of

this experiment, we use the Calvo models implemented in the cmpbayes

library1.

5.3 Evaluation Results

5.3.1 RQ1 : How do Graph Neural Network perform over a procedural
knowledge Graph when compared against other state of the art
baseline models?

For evaluating the Graph neural network models against the different

translational, semantic matching and random walk models, we conducted

the 30 iterations of training over different knowledge graph representa-

tions of the procedural data as explained in the Dataset section of Chapter

4. As discussed earlier, we use the Matches@k metric as the surrogate

for our downstream process built over these embeddings. This metric has

configurable options such as the inclusion of head, distance measure used

in the embedding space and k values which we have defaulted here to 3.

Table 5.1 shows the Matches@k results for different embedding models

and configurations for aggregation. For the simple notion of comparing

each type of GNN, such as GCN, RGCN, and RGAT, we use the values of

their best models instead of individual variants with different layers.

In the case of rη, which is the representation with the highest level abstrac-

tion, RDF2Vec(h̄,euc) outperforms all the other models. It is important to

note that this representation is homogeneous because it has only one type

of edge between the nodes, and it is evident that Multi-relational models

do not perform well enough. Although the Calvo plot in Figure 5.2, which

provides a comparison for all the models, shows that RGCN has a higher

chance of performing the best, the margin looks pretty slim considering

the probability being so dispersed.

1 https://github.com/dpaetzel/cmpbayes

https://github.com/dpaetzel/cmpbayes
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Table 5.1: Subgraph embedding aggregation(Matches@k) results for k=3. Please
note that the best method results are highlighted in bold

R. H. Dist. TransE ComplEx RotatE DistMult BoxE rdf2vec GCN RGCN RGAT

rη h euc 0.48 0.61 0.78 0.79 0.81 0.38 0.69 0.80 0.77
jac 0.55 0.53 0.75 0.78 0.7 0.42 0.65 0.76 0.78

h̄ euc 0.52 0.5 0.61 0.73 0.72 0.82 0.73 0.69 0.70
jac 0.53 0.51 0.63 0.69 0.73 0.51 0.69 0.70 0.74

rρ̂,r el h euc 0.48 0.62 0.56 0.53 0.69 0.52 0.70 0.83 0.78
jac 0.55 0.51 0.56 0.56 0.5 0.51 0.68 0.78 0.79

h̄ euc 0.51 0.5 0.52 0.54 0.59 0.7 0.73 0.70 0.69
jac 0.52 0.51 0.53 0.53 0.63 0.5 0.68 0.72 0.74

rρ̂,ch,e h euc 0.36 0.38 0.41 0.47 0.51 0.67 0.46 0.48 0.55
jac 0.38 0.36 0.39 0.49 0.45 0.45 0.47 0.46 0.57

h̄ euc 0.38 0.34 0.4 0.47 0.49 0.71 0.50 0.46 0.53
jac 0.4 0.34 0.38 0.5 0.49 0.52 0.48 0.45 0.55

rρ̂,ch,e,η h euc 0.44 0.47 0.55 0.6 0.67 0.6 0.53 0.62 0.64
jac 0.49 0.43 0.53 0.62 0.62 0.51 0.53 0.61 0.63

h̄ euc 0.45 0.43 0.52 0.61 0.63 0.59 0.54 0.58 0.62
jac 0.47 0.42 0.53 0.61 0.61 0.57 0.51 0.60 0.64

rρ̂,r ei ,e,η h euc 0.3 0.28 0.27 0.37 0.43 0.64 0.49 0.49 0.54
jac 0.32 0.29 0.3 0.4 0.41 0.38 0.52 0.47 0.60

h̄ euc 0.3 0.28 0.27 0.37 0.41 0.7 0.49 0.43 0.53
jac 0.33 0.29 0.3 0.39 0.45 0.43 0.50 0.47 0.56

For the representation rρ̂,r el , our graph neural network models perform

the best, especially RGCN, which performs much better than all other

models. This representation includes quantification of the process pa-

rameter adjustment as an edge attribute over the edges. This would also

mean that the weight-agnostic models, like the translation models, do

not account for the quantification in their training process, which is re-

flected in the results. The Matches@k results for all the models can again

be compared using the Calvo plot (refer Figure ?? ), clearly showing an

overwhelming win for Graph neural network models.

In the case of representation rρ̂,ch,e , RDF2Vec performs phenomenally

well compared to other models, almost 14% better than other configu-

rations. The only reason we could discern from this upset for GNNs is

the lack of a direct edge between the quality characteristics and process

parameters due to the introduction of a new additional quantification. A

random walks-based algorithm overcomes this lack of connection. Again

in the context of model comparison, RDF2Vec seems clearly superior in

terms of its performance (refer Figure 5.4).
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Figure 5.2: Calvo Plot for comparing all the embedding methods with their aggre-
gation for representation rη

For representation rρ̂,ch,e,η, BoxE performs slightly better than RGAT. Both

these models can handle multi relational data well, BoxE specifically has

known to have better performance with nodes with higher arity than just

binary relations, which is part of this representation. BoxE implements

n-ary relations as hyperplane and the GNNs seem to be lacking in that

respect.

5.3.2 Indirections and Reifications

For the reification-based representation rρ̂,r ei ,e,η, the GNN suffers against

RDF2Vec, which uses the random walk to overcome the indirections

caused by reification. Reification upsets triples structure which forms the

crux of most embedding models. In both these representations discussed

above, triples no longer contain all the information essential to the quality

characteristic and process parameters relationship. This indirection does

not bode well for GNN models as well. The Calvo plots for representations
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Figure 5.3: Calvo Plot for comparing all the embedding methods with their aggre-
gation for representation rρ̂,r el

rρ̂,ch,e,η, rρ̂,r ei ,e,η clearly shows this dynamics of the model as explained

before as well. The differences between the RDF2Vec model performance

and other models become more apparent in the Calvo plots.
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Figure 5.4: Calvo Plot for comparing all the embedding methods with their aggre-
gation for representation rρ̂,ch,e
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Figure 5.5: Calvo Plot for comparing all the embedding methods with their aggre-
gation for representation rρ̂,ch,e,η



5.3. EVALUATION RESULTS 53

Figure 5.6: Calvo Plot for comparing all the embedding methods with their aggre-
gation for representation rρ̂,r ei ,e,η
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5.3.3 RQ2 : How does the GNN model configurations affect perfor-
mance against different representations?

For this research question, we will analyze the results of GCN, RGCN, and

RGAT variants against different representations and aggregation configu-

rations. As explained in the experimental setup, we implemented three

different versions-1 layer, 2 layer and 3-layer versions of each GNN model

to compare their results in handling different models.

The primary motivation behind this task is to understand that the number

of layers in a GNN measures the propagation depth from the head node.

This is analogous to the receptive field concept of convolution concerning

image processing. As the number of layers increases, the message-passing

process aggregates more data farther from the head node with each layer.

Table 5.2: Subgraph embedding aggregation(Matches@k) results for k=3. for
GCN, RGCN, RGAT with its variants.Please note that the best method results are
highlighted in bold

R. H Dist. RGCN1 RGCN2 RGCN3 RGAT1 RGAT2 RGAT3 GCN1 GCN2 GCN3

rη h euc 0.8 0.78 0.79 0.77 0.72 0.76 0.64 0.68 0.69
jac 0.74 0.76 0.6 0.73 0.74 0.78 0.61 0.63 0.66

h̄ euc 0.63 0.66 0.69 0.66 0.65 0.7 0.57 0.66 0.73
jac 0.65 0.69 0.7 0.68 0.68 0.74 0.59 0.64 0.69

rρ̂,r el h euc 0.8 0.84 0.77 0.78 0.78 0.74 0.63 0.66 0.7
jac 0.72 0.78 0.57 0.73 0.77 0.79 0.58 0.63 0.68

h̄ euc 0.62 0.69 0.69 0.66 0.69 0.67 0.57 0.65 0.73
jac 0.63 0.72 0.72 0.68 0.7 0.74 0.57 0.64 0.68

rρ̂,ch,e h euc 0.48 0.47 0.48 0.49 0.55 0.54 0.46 0.44 0.46
jac 0.45 0.46 0.44 0.49 0.52 0.57 0.46 0.47 0.47

h̄ euc 0.41 0.41 0.46 0.41 0.48 0.53 0.5 0.47 0.45
jac 0.42 0.42 0.45 0.46 0.5 0.55 0.47 0.48 0.47

rρ̂,ch,e,η h euc 0.57 0.61 0.62 0.58 0.64 0.61 0.52 0.49 0.53
jac 0.6 0.61 0.61 0.6 0.63 0.63 0.5 0.49 0.53

h̄ euc 0.56 0.58 0.58 0.56 0.62 0.61 0.54 0.53 0.54
jac 0.57 0.6 0.6 0.57 0.63 0.64 0.5 0.5 0.51

rρ̂,r ei ,e,η h euc 0.39 0.39 0.49 0.46 0.48 0.54 0.39 0.41 0.49
jac 0.42 0.43 0.47 0.49 0.55 0.6 0.47 0.49 0.52

h̄ euc 0.35 0.37 0.43 0.4 0.46 0.53 0.41 0.45 0.49
jac 0.38 0.39 0.47 0.45 0.53 0.56 0.47 0.47 0.5

It is evident from the values in the table that the Performance of GNN

models vary with the complexity of the model and representations. Sim-

pler models like RGCN1 and GCN do perform well on representation with

higher abstraction. Out of all the GNN model variant, RGAT3 performs the
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best in most cases. As a complex model with higher number learnable pa-

rameters RGAT3 is able to better capture the complexities of a procedural

graph with higher arity and reification. The performance of RGCN3 and

RGAT3 is better in comparison to simpler models with low abstraction rep-

resentations like rρ̂,ch,e , rρ̂,ch,e,η, rρ̂,r ei ,e,η.

Also with the chained binary representation in the rρ̂,ch,e , smaller models

do not capture relationship between quality characteristics and process

parameters where there is no directed edge between them.

Figure 5.7: Calvo Plot for comparing all the GCN variants over all representations.
Subscript represents the number of layers of convolution in these models
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5.3.4 RQ3 : Among the GNN-based models, how does Multi-relational
models perform against homogeneous models?

This question can be answered by looking at the Matches@k results from

Table 5.2. It illustrates that the GCN model works well with high abstrac-

tion representation though the multi-relational models perform well too.

The additional relational parameters learned by the RGCN though not di-

rectly useful in the case of rη, still facilitate better performance than the

GCN.

With the increasing complexity of the models, RGCN and RGAT perform

much better than the GCN model, but the 3 -layer variant of GCN still

gives comparable performance. This observation is much more visible

in the case of the Calvo plot in Figure 5.7. In this plot, the probability of

RGAT is the highest overall representation GCN takes the second spot over

consistent performance.

We hypothesize that the higher metric values which occur RGCN and

RGAT over GCN might be attributed to additional parameters rather than

the multi-relational nature of the data itself. At this point, the lack of data,

indirection and n-ary relations play a more significant role in the overall

performance than multi-relationality. This conclusion can be drawn by

looking at the values of RGCN3 and GCN3 models over the rρ̂,r ei ,e,η rep-

resentation. Both models perform almost the same, even though one is

multi-relational while the other is relation-type agnostic.
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Conclusions and Future Work

6.1 Conclusions

The primary objective of this thesis has been to evaluate a popular Graph

neural network model over the different representations of a procedu-

ral knowledge graph obtained from a manufacturing process. As part of

the project, we perform the experiments on a practical manufacturing

scenario- the AIPE project, which is a dataset obtained from the Fused

Diffusion Model 3D printing use-case. Different representations with dif-

fering levels of abstraction were used to determine how embedding model

performance varied with the increasing complexity of the input data.

In the context of this thesis, we looked at the basic concepts behind the

Graph neural network Architectures in Chapter 2. It touched upon the

concepts of edge, node representation as matrices and adjacency matrix

as graph properties which are input to GNNs. Then we explained the basic

concepts of updation and aggregation, which are used in GNN message

passing while learning the embeddings.

For comparison of our GNN models, we chose the state-of-the-art base-

line Translation, semantic matching and Random walk-based models

from the literature. We discussed these models in detail in Chapter 3. In

the same chapter, we explored how knowledge graph research has taken

over the manufacturing and production industry in the wake of Industry

4.0.

Chapter 4 offered a deeper look at the concepts behind Graph convolution,

its origin and then a more profound conceptual background on the Graph

Convolution Networks and its variant, which we have used in our thesis.
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This chapter also explained the Encoder-Decoder Model architecture used

in training GNN models to learn node embeddings.

Finally, we evaluated our research questions with various experiments in

Chapter 5. We defined an alternate metric- Matches@k for our current

scenario using the Subgraph embedding aggregation concept proposed

by (NORDSIECK et al., 2019). Different translation models such as TransE,

RotatE and BoxE and Semantic Models like DistMult, ComplexE, and a ran-

dom walk-based model RDF2Vec were compared with the GNN models

-GCN, RGCN, and RGAT. We also explored the idea of propagation depth

being a factor in the case of model performance when different represen-

tations with differing complexities are compared.

Here we draw some important conclusions from our experiments. First,

GCN and its variants perform well with the representation with edge

weight against edge agnostic methods.

Second, GCN and its variants do not perform better with knowledge

graphs containing higher arity or reified relationships, which causes in-

directions in the knowledge graph. Overall the GNN models performed

consistently over all the representations despite the upsets at individual

configurations, while other model performances varied erratically with

the configurations and representations.

Third, the propagation depth of GNN models based on the number of

layers affects the performance concerning more complex representations.

The simpler GCN model and RGCN1 variant performed well with repre-

sentation with the highest abstraction. With the lower abstraction, RGAT3

with 3 layers could better capture the complexities of chained binary rela-

tions and indirections than simpler GCN models.

Fourth, homogeneous models perform poorly than multi-relational mod-

els in most cases in procedural graphs owing to their complex nature. A

method like RDF2Vec, which performs random walks over the neighbor-

hood, works well in this kind of knowledge graph structure. This is pri-

marily because of scarce edge attributes or node attributes and a need for

more data for a deep learning model to capture the essence of the graph

neighborhood accurately.
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6.2 Limitations and Future Work

6.2.1 Dataset

One of the primary limitations of our work is the lack of procedural data.

The acquisition of data in the context of modelling and manufacturing is

very expensive. During our experiments, we augmented the data using the

negative sampling technique where we trained the model on edges that do

not exist in the original graph with edge probability between the edges as

zero.

Apart from our Local closed world Assumption negative sampling method,

a future work could look to impute possible process parameter values and

re-parameterization values by simulating the manufacturing procedure

or defining a probability distribution for each of the input variables and

augmenting values by sampling from this distribution. In essence, create

methods to synthetically generate more data using the domain knowledge

of the manufacturing process.

6.2.2 n-ary relations

Another major limitation of our work was learning the graph structure

from the n-ary relations. In the relationship with lower abstractions and

higher complexity, our major problem was the inability of our current

GNN models used here in our experiments to train over and learn rep-

resentations from relations which were not binary. Ternary relations in

the representations led to a disconnect between the process parameters

and quality characteristics when edges were defined only as binary. In a

complex setting where more than two relations define a single fact, GNN

fails to recognize them as efficiently as other embedding models like BoxE,

which uses the hyperplanes to learn relation embedding and can handle

n-ary relations.

An approach to implement n-ary relations in a graph neural network con-

text would be to create flexible architectures to take a differing number of

source nodes when considering a relation or a fact. Few examples in the

literature, such as the Graph LSTM architecture used in the case of (WANG

et al., 2018) and Neuinfer (GUAN et al., 2020) architecture with additional
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convolution layer for other entities of relations apart from a primary bi-

nary relation. Other architectures would include using hypergraph graph

neural networks, each hyperplane used to represent n-ary relations as bi-

nary relations in each hyperplane later concatenated across to obtain a

single n-ray embedding.

6.2.3 Indirections

Complex processes, such as manufacturing processes, have dependencies

between various nodes, which are essential to be viewed as a whole. With

iterative relations, which have dependencies between each iteration, the

representation of this structure exponentially becomes complicated and

cannot be seen as binary relations or triples. This case might be similar

to n-ary relations, but now the focus of the problem is neighbourhood

structures. In the case of low abstraction representation, the graph neigh-

bourhood reconstruction can have reified relations, n-ary relations, graph

loops and isolated neighbourhood structures.

Graph neural network works by learning and updating their weights and

embedding for node and edges through aggregating learnt weight from

propagating in the neighbourhood. In indirections caused by the above-

mentioned complex representation, GNN message passing architecture,

as established in the case of GNN models like GCN, RGCN, and RGAT,

may not capture the neighbourhood by using the existing approach’s

convolution-based neighbourhood aggregation mechanism. A more com-

plex message-passing technique to better capture underlying indirections

can be designed.

The simplest method which worked in our representations was using a

Random walk-based algorithm like RDF2Vec; these representations cap-

ture the neighbourhood structure more quickly than a more sophisticated

method like GNN.
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