
Otto-von-Guericke-University Magdeburg

Faculty of Computer Science
Department of Latex Templates

Leveraging explainability to improve ranking
as part of information retrieval

Master Thesis

Author:

Shivani Jadhav

Examiner and Supervisor:
Prof. Dr.-Ing. Ernesto William De Luca

2nd Examiner:
Dr. Konstantin Mergenthaler

Supervisor:
M.Sc. Erasmo Purificato

Magdeburg, 27.07.2022

Contents

Acknowledgements 3

Abstract 4

1 Introduction 5
1.1 Motivation . 6
1.2 Goals . 7
1.3 Research Questions . 8
1.4 Research Methodology . 9
1.5 Thesis Outline . 9

2 Related Work 10

3 Concepts 12
3.1 Information retrieval . 12
3.2 BM25 . 13
3.3 Machine learning . 13

3.3.1 Neural Networks . 14
3.4 Bipartite ranking . 15
3.5 Learning to Rank (LTR) . 16

Pointwise . 18
Pairwise . 18
Listwise . 20

3.6 Evaluation metrics . 23
3.7 Explainable AI (xAI) . 24

3.7.1 SHapley Additive exPlanations (SHAP) 24

4 Used Technologies 26
4.1 Algorithms . 26

4.1.1 Traditional Machine learning for LTR 26
Pointwise LTR using Random Forest Classifier 26
Pointwise and Pairwise LTR using XGBoost 28

4.1.2 Neural Networks for LTR using tensorflow-ranking 29
Pointwise LTR using tensorflow-ranking 31
Pairwise LTR using tensorflow-ranking 31
Listwise LTR using tensorflow-ranking 32

4.2 Feature Selection Methods . 32
4.3 Sampling Strategies . 35
4.4 Benchmarking . 36

1

Contents

5 Demand Processing Pipeline; Design, Implementation and Evaluation 37
5.1 Data . 37

5.1.1 Raw Data . 37
5.1.2 Feature Generation using OpenSearch 39

5.2 Experimental Setup . 44
5.2.1 Experiments with the handcrafted features 44

Pipeline . 44
Results . 46

5.2.2 Intermediate experiments with features generated using OpenSearch 47
Pipeline . 47
Results . 48

5.2.3 Final experiments with features generated using OpenSearch 49
Pipeline . 50
Results . 51

5.3 User Study . 54
5.3.1 Observations . 54

6 Discussion 57

7 Conclusion and Future Work 61

Appendices 62
A. 79 handcrafted features . 62

Bibliography 65

Statement of Authorship / Selbstständigkeitserklärung 70

2

Acknowledgements

I would like to thank Konstantin Mergenthaler and Erasmo Purificato for their constant
guidance and feedback while doing this thesis. I would like to thank Prof. Dr.-Ing. Ernesto
William De Luca for giving me the opportunity to write my thesis under his supervision.
Coming to Germany and doing my master’s at Otto von Guericke university has been
the best decision of my life. I want to thank the entire OVGU faculty who have helped
me grow both professionally and personally. Thank you to Konstantin Mergenthaler
and Nischal Padmanabha for being awesome mentors to me. I would like to thank my
colleagues at Scoutbee, from whom I have learned a lot of things. Lastly and most
importantly, I would like to thank my family and friends for trusting me and being there
for me.

3

Abstract

In the supply chain industry, information retrieval can be defined as finding relevant
suppliers given a demand. Information retrieval is finding relevant information from the
available noisy data by ranking the information based on its relevance to the requested
query. Learning to Rank (LTR) solves information retrieval tasks using Machine Learning.
LTR consists of three approaches referred to as pointwise, pairwise and listwise. In this
thesis, we explore whether the use of ranking models that require extensive manual feature
generation is justified in the supplier search context. Therefore, all three approaches are
experimented by using traditional machine learning algorithms and neural networks to find
a ranking model that ranks the relevant suppliers at the top, given the specific demand.
One of the challenges is the class imbalance of the dataset, which is tackled using various
sampling strategies, and the sampled data is used to train the respective ranking models.
A user study involving domain experts is conducted to choose the best performing model,
along with measuring the performance of all the ranking models on a test set using the
evaluation metrics Precision@k and Mean Average Precision. Furthermore, this thesis
aims to justify the use of self-explanatory features. The results show that a basic model,
i.e., a random forest classifier with fewer self-explanatory features, is preferred by the
ranking systems involving human-in-the-loop. However, having just one ranking model
fails to generalize over all the demands as the demands belong to a wide range of domains.
An explainable AI module to know the feature importance is implemented to gain insights
from the ranking models, which helps to develop the next set of features for the next
version of the ranking models.

4

1 Introduction

Data is in abundance. One of the challenges is to find relevant information from this
plethora of data. This is where information retrieval (IR) comes into the picture. Infor-
mation retrieval stands for retrieving relevant information as per the requirement. One
use-case is from the supply chain industry, where finding relevant suppliers of the required
item is like finding a needle in a haystack. Elaborating further, manufacturers depend on
various suppliers when building their products. For example, a car manufacturing com-
pany would require rubber tyres, and querying noisy internet data to find suitable suppli-
ers of rubber tyres is time-consuming. Scoutbee is a company that operates specifically
in the procurement space, and it provides, as a service, a long list of potential suppliers
for a particular requirement demanded by a customer.

When a demand is made, a query is formulated. The list of potential suppliers retrieved
is further filtered and sorted by a ranking model. Overall, for this problem statement,
the input space consists of a list of candidate suppliers associated with a demand (query),
the hypothesis includes a scoring function, a loss function based on evaluation measure,
and the output space contains the ranked list of suppliers.

BM25 [Rob97] is a traditional ranking function with its share of advantages and disadvan-
tages. When machine learning is used for ranking, it is a Learning to Rank (LTR) [Liu11]
problem. LTR can be solved using one of the three approaches, viz. Pointwise, Pair-
wise, and Listwise. In this thesis, the advantages of the BM25 model are exploited in
the feature generation part of the ranking architecture. These generated features are
then used to build machine learning, and deep learning models for the three LTR ap-
proaches.

The ranking problem is also solved by the Google search engine where, given a query,
a list of websites is displayed, with the topmost one being the most relevant concerning
the query [PBMW99]. On the other hand, the e-commerce business Amazon deals with
the ranking of the products when a customer queries it with a focus on sales conversion
along with relevancy [P18]. Both cases address ranking in information retrieval, and
similar to most IR systems, they lack an explanation for the provided rankings. Thus,
leaving transparency out of the process. According to the SWIRL report [CDS18] and
[OGGdR+21], transparency is one of the issues that must be addressed by the IR com-
munity. Hence, one of the areas of focus for this thesis is explainability, which would
explain why and how a particular item was ranked at a particular position. The insights
gained from the explainability feature will not only provide transparency in the entire
ranking process for the stakeholders, making the ranking process more reliable but can
also be leveraged in guiding further ML-based feature generation and modeling by the
developers.

5

1.1 Motivation

The data-driven intelligent systems nowadays rely less on hard-coded rules and more
on examples and human feedback. These humans are, in most cases, non-technicians
but can be domain experts. The technicians or programmers build a bridge between
human feedback and the intelligence that drives the data-driven applications. “A set
of strategies that combine human and machine intelligence is called human-in-the-loop
machine learning” [Mon21]. The human-in-the-loop contributions can assist the machine
learning models, increase the accuracy of the machine learning models, and make machine
learning models more efficient and reliable.

The problem this thesis is trying to solve is that given a demand and a list of potential
suppliers, the ranking model should provide an ordered list of the suppliers, with the most
relevant suppliers at the top. The problem statement is denoted in the first three blocks
of the Fig. 1.1

Figure 1.1: Ranking model with human-in-the-loop. The demand consists of de-
mand_properties and an associated list of suppliers, which is consumed by
the ranking model. The ranking model sends the ranked suppliers based
on the demand to the domain experts, who will then provide the curated
supplier list to the customer.

However, the top N suppliers are not directly considered as the final list of the suppliers
for the given demand. Instead, domain experts go through the ranked list and mark the
suppliers as relevant and irrelevant until the required number of suppliers is found. These
domain experts act not only as the stakeholders but also as the human-in-the-loop for
the ranking model. Their significant contribution is to make the ranking model more
accurate by annotating the suppliers, which further generates labeled training data. The
primary motivation of this thesis is to reduce human efforts by building a precise ranking
model.

Learning to Rank (LTR) for information retrieval is an approach to solving information
retrieval tasks using machine learning, and many surveys have been done in the field of
LTR for information retrieval [HWZL08], [CZH+12], [GDR16]. These surveys provided a
direction for the thesis to experiment with various ranking approaches in an attempt to
address the aforementioned problem statement.

Explainability in machine learning (xAI) [GA19] deals with making the machine learning
models more transparent [ADRDS+20]. It has helped to ensure impartiality in decision-
making, directed the provision of robustness, and to some extent provided trustworthi-
ness [ADRDS+20]. These three points have been surveyed already [AB18]. There
already exists some research surrounding the point of obtaining insights from explainabil-
ity [LEC+20], [KWG+18], [LNV+18]. There is not much research available when it

6

comes to explaining the rankings predicted by the ranking models apart from [VG19],
[ZWB+20], [SWKA20].

Considering the example with the demand for rubber tyres, additional criteria for suppliers
operating at a particular location may be demanded. This requirement for a product
at a particular location makes the demand multi-faceted, and providing explanations
becomes even more necessary. This motivated the thesis to explore explainability in
ranking to some extent. Self-explaining models are the models in which explainability
plays a key role already during learning [AMJ18]. In this thesis, the generation of self-
explanatory features provides a way to build self-explaining models. Explainability and
self-explanatory features will not only be used to provide transparency to the domain
experts but will also prove as a deciding factor in building the next version of the ranking
model, and this will provide an efficient data-driven solution in curating the final long list
of suppliers.

1.2 Goals

Revisiting the previous sections, the main goal of the thesis is to build a ranking model
that could reduce the manual efforts required to curate the long list of suppliers for a
particular demand. Ideally, the ranking model should be so efficient and reliable that
the role of domain experts in the Fig. 1.1 is completely eradicated. However, it would
be an over-ambitious goal. Hence the narrowed-down goal of this thesis is to build a
ranking model that provides the majority of the relevant suppliers at the top, which
would reduce the manual efforts put in by the domain experts in reviewing the suppli-
ers.

Although machine learning models have provided much impetus to data-driven appli-
cations, there is a demand for explainability [PHB+18]. This brings us to the second
goal of the thesis, which is to answer why a ranking model assigned a particular sup-
plier with a specific relevancy score, in the ranked list of suppliers, for a particular de-
mand.

This thesis is not trying to reinvent the wheel but is built on top of the research al-
ready conducted in the research area of LTR for information retrieval with an add-on
of explainability. There already exists a plethora of theoretical as well as experimental
surveys for LTR for information retrieval. However, most of them are done on benchmark
datasets. The major challenge with benchmark datasets is that they may not capture
all the nuances in the model compared to the real-life data that drives the intelligence
of data-driven applications. Thus, this thesis will capture the pros and cons of different
LTR approaches when applied to real-life data.

Conventional machine learning and deep learning models will be experimented with, with
all the three Learning to rank (LTR) approaches (Pointwise, Pairwise, and Listwise). Fur-
thermore, SHAP (SHapley Additive exPlanations) [LL17] values will be plotted for each
model to interpret their predictions. A systematic overview of LTR using conventional
machine learning models, LTR using deep learning models, and xAI in the form of SHAP
plots and exploitation of the self-explainability of the ranking model will be done in this
thesis. Along with this, the results provided by each ranking model will be critically
discussed and analyzed.

7

The thesis not only aims to build a model-driven solution but also a product-oriented
one [KKH22]. Hence, this thesis touches on the machine learning lifecycle [ZCD+18].
There is a lot of hidden technical debt that needs service when it comes to Machine
learning models [SHG+15]. One way to overcome one of the debts is by tracking all the
ML experiments in such a way that, at any given time, any model whose results are
interesting can reproduce the behavior. Along with this, a thorough analysis of all the
results with the domain experts in the loop motivated the third goal of this thesis to
develop a product-oriented solution.

To summarize, the work presented in this thesis aims to leverage the explainability of all
the experimented ranking models, with each ranking model being easily reproducible and
maintainable, to gain further insight towards improving the ranking model—these goals
led to the formulation of the following research questions.

1.3 Research Questions

"Occam’s razor is the problem-solving principle that entities should not be multiplied
beyond necessity" [Hey97]. It can be approximately paraphrased as, ’always go with
the simplest approach in case of equally good solutions.’ When it comes to machine
learning, what is more important than choosing a powerful algorithm, is to know what to
include and what to not in the model. In this work, this means that even if the simple
ranking models do not out-perform the complex ranking models, they will at least perform
similarly to the complex ranking models. This will be answered by the following research
question.

• RQ1 Will simpler models with fewer features yield better explainable results and
thus be preferred in LTR problems with human-in-the-loop?

In this era, it is not sufficient to just build an accurate model but a model which could
answer the question ’Why this prediction?’ to some extent. To assist the domain experts,
just providing a ranked list of suppliers is not enough. A ranked list of suppliers and
some intuition as to why the ranking model considered a particular supplier to be at a
particular position in the ranked list is required. The previously mentioned goal of the
thesis to provide transparency in the ranking pipeline is particularly interesting. This is
because if this goal is achieved, the benefit of answering the following research question
will accrue.

• RQ2 Can gained explainability be leveraged to improve the feature generation of
the ranking model?

In most of the tasks, building a generalized machine learning model which is universally
valid is very difficult [SPM19]. Hence, various ensemble techniques are implemented.
It would be interesting to see if one generalized ranking model is enough to solve the
demand-supplier ranking problem. This formulates into the following research ques-
tion.

• RQ3 Can one ranking model generalize well on all of the demand-supplier sets?

8

1.4 Research Methodology

The data used in this thesis consists of demand with an associated list of suppliers. Each
of the suppliers is assigned a label as relevant or irrelevant. The task is to use this binary-
labeled data to learn the ranking of the suppliers concerning a demand.

Various models trained on differently sampled data with different sets of features are
experimented with to solve the aforementioned ranking problem. These sets of features
may differ in the following ways, the way the features were generated in a set, whether
or not a feature selection algorithm was applied to them, and the number of features in
a set. To answer the RQ1, models trained on different sets of features are compared.
Each model is also passed to the explainability module that will state the importance
of the features for the respective model. This knowledge about feature importance will
be exploited to gain further insights for feature generation, and this will be an attempt
to answer the RQ2. Each demand is different in a certain way. Hence, a granular level
analysis of the outcomes obtained from the ranking models is conducted on the demands
on which the various ranking models were tested. The finding from this analysis can be
used to answer the RQ3.

1.5 Thesis Outline

Describe the structure of this document.

9

2 Related Work

This section gives this thesis a steady piece of land to stand on, as the vast landscape of
various experiments to solve the aforementioned ranking problem is explored.

’Learning to Rank for Information Retrieval’ [Liu11] can be considered the holy grail for
LTR. This literature laid a strong foundation for building this thesis. Its content ranges
from the introduction of the ranking problem and defining LTR approaches to implement-
ing the various LTR approaches on the LETOR dataset [TTJ+07]. The performance of
various approaches on the LETOR dataset is drilled down, which allows comparing these
findings with the findings of this thesis which uses real-world data. Apart from this, one
of the tasks mentioned as future work was giving more importance to feature engineering.
This gave a direction to this thesis which has feature engineering and features analysis as
the major area of focus.

Addressing the task of feature engineering in the future work of the above-mentioned tuto-
rial [Liu11], a survey on feature selection for LTR has been studied in [SK18]. The paper
divides the feature selection approaches into three categories, i.e., Filter-based, Wrapper,
and Embedded Methods. Some of the algorithms belonging to each of the categories
have also been explained in depth in this paper. The paper explains all the feature selec-
tion approaches theoretically and shows the effect of feature selection approaches on the
OHSUMED dataset [HBLH94] where RankSVM [Joa06] was used as an LTR approach.
In this thesis, some of the feature selection methods described in [SK18] have been imple-
mented, and the effect of feature selection methods on the traditional machine learning
based pointwise LTR approach is shown. This led to the choosing of a new approach to
solve the LTR problem.

Selecting an algorithm to implement the various LTR approaches needed thorough re-
search. One of the research works is conducted by Ibrahim et al. in the paper ’Compar-
ing pointwise and listwise objective functions for random-forest-based learning-to-rank
[IC16]. This paper compared random forest based pointwise, listwise, and a hybrid LTR
approach extensively on six smaller to moderate size datasets and two large datasets us-
ing NDCG@10 and MAP. In some cases, random forest listwise and random forest hybrid
approaches outperformed random forest pointwise. However, the performance difference
was not so significant except in some cases of random forest hybrid. Experimenting with
hybrid approaches is beyond the scope of this thesis. Hence, the random forest based
pointwise approach is only explored in this thesis.

Selecting the algorithm for the pairwise approach is based on [QKF20], where Qo-
mariyah et al. solved a personalized recommendation task using various learning to
rank approaches for the IMDB movies dataset by Kaggle. In the experiments, the
pairwise approach outperformed the pointwise and the listwise approaches. All the ap-
proaches were implemented using the ranking module in XGboost [CHB+15]. In this

10

thesis, the pairwise approach, which is LambdaMART [Bur10] is implemented using XG-
boost.

Google released the open-source library, Tensorflow Ranking [PBW+19] which claims to
solve large-scale LTR problems and is deployed into production for solving some rank-
ing tasks at Google. In this thesis, this deep learning based framework for LTR is
used to implement the pointwise, pairwise, and listwise approaches using Neural net-
works.

Like the machine learning models, while building the ranking models, hyperparameter
tuning of the models is done. Van et al. [VRH17] demonstrated the importance of hyper-
parameters while building Random forest and Adaboost in a classification setting. They
experimented with the importance of the respective hyperparameters for the two ML mod-
els across 100 datasets. They concluded their work by jotting down the important hyper-
parameters, and this thesis deals with random forest. So the hyperparameters that are se-
lected for tuning the random forest model are the top four hyperparameters as per the con-
ducted survey on hyperparameters. However, not much relevant research has been based
on hyperparameter tuning pairwise and listwise approaches.

Another issue that needs to be tackled is the class imbalance nature of the datasets, as a
small fraction of the available information is relevant. In the paper [IC14], the imbalance
nature of LTR opensource benchmark datasets has been investigated. In an attempt to
reduce the training time which is considered, a focused investigation of undersampling
of irrelevant documents using a random approach and a more deterministic approach is
conducted, which reduces the amount of training data and thus an overall reduction in
the training time. Even though, in this thesis, training time reduction is not a priority
to solve, the class imbalance nature of the opensource benchmark dataset for LTR tasks
is very well reflected in the demand-supplier dataset that is consumed by the ranking
model. That being said, out-of-the-box ML engineering problems like class imbalance
should be used to improve the quality of the training data, which in turn will lead to the
development of more accurate and more reliable ranking models is one of the main focus
of this thesis. Implying LTR-based ranking models using various sampling techniques are
thoroughly compared.

As the title of this thesis suggests leveraging the explainability of the ranking models,
the last component of this thesis is the xAI module. Interpretability of Machine learning
models is like flossing. Everybody knows it is important, but only some do it. Christoph
Molnar [Mol18] has classified machine learning interpretability into two types, post hoc,
where interpretability techniques are applied after training the machine learning models,
and intrinsic, where self-explanatory Machine learning models are built. This classifi-
cation forms the basis of [DLH19] where a further clear distinction between local and
global interpretability is explained, and [ZWB+20] where an intrinsically interpretable
LTR model is built using Generalized additive models(GAMs). In this thesis, we try to
incorporate explainability as explained in these papers.

11

3 Concepts

This chapter gives an overview of all the concepts starting from defining information re-
trieval, one of the most traditional ranking functions BM25, to recent ranking methods
using LTR. Further it explains the evaluation metrics and is concluded with the explana-
tion of the SHAP values calculation.

3.1 Information retrieval

Finding the information of interest from this plethora of data could have been a never-
ending task had it not been for systems that find relevant information. In the context of
this thesis, this system is an information retrieval system.

"Information retrieval (IR) is finding material (usually documents) of an unstructured na-
ture (usually text) that satisfies an information need from within large collections (usually
stored on computers)" [MRS10].

In simple terms retrieving relevant information as per the need is information retrieval.
To retrieve relevant information, a scoring mechanism is needed, which is done by ranking
in information retrieval.

Conventional ranking models in IR can be divided into two types, Query-dependent rank-
ing models that retrieve documents based on the presence of the query terms in the
documents and Query-independent ranking models that rank documents based on their
self-importance [MRS10]. In this thesis, the problem statement is to rank suppliers based
on the demand, where a demand corresponds to a query and the suppliers correspond
to the documents. Implying an interest on Query dependent ranking models. The most
basic model is the Boolean model [BYRN+99] which will just answer whether the supplier
is relevant or not for the given demand with a limitation of not being able to answer how
much the supplier is relevant for the demand. This is solved by Vector Space Models
(VSM) [BYRN+99] in which the suppliers and the demands are represented as vectors
with Tf − IDF weighting.

Tf (t, p) =number of times term t occurs in a supplier p

IDF (t) = log S
sft

S =total number of webpages

sft = number of webpages with term t

The assumption of term independence is overcome by Latent Semantic Indexing (LSI)
[DDF+90] which maps the vector representations to a latent space using Singular Value
Decomposition (SVD). The following section explains the probabilistic ranking model

12

BM25 [Rob97] which does not use the ground truth at all, which is used for feature
generation in this thesis.

3.2 BM25

BM25 [Rob97], as a scoring method, allows sorting by relevancy based on the score given
by the equation 3.1.

Given a demand d, containing the terms t1,....,tN , the BM25 score for supplier webpage
p is calculated as follows:

BM25(d, p) =
N∑
i

IDF (ti).T f(ti, p).(k1 + 1)
Tf(ti, p) + k1.(1− b + b.Len(s)

avsl
)

(3.1)

where Len(s) =number of words in a webpage s

avsl =average length(number of terms) of webpage

b and k1 are free parameters

In conventional IR models, there are free parameters that need to be tuned. Consider the
equation 3.1 of BM25 model, b and k1 need to be tuned on a validation set. However,
to tune them is not so trivial considering the fact that the IR evaluation metrics 3.6 are
non- differentiable and non-continuous w.r.t the parameters. The traditional information
retrieval approaches don’t make use of feedback. In our case, the feedback from the
domain experts is present in the form of whether a supplier is relevant or irrelevant for
a demand. Machine learning has proven to be effective when it comes to automatically
tuning parameters, and hence, applying machine learning to solve the aforementioned
ranking task seems reasonable.

3.3 Machine learning

"Machine learning is the study of computer algorithms that allow computer programs to
automatically improve through experience" [MM97].

Based on the availability of the ground truth, machine learning can be classified into
supervised (when the ground truth is present) and unsupervised (when the ground truth
is absent). The demand-supplier data consists of ground truth in the form of relevancy of
the supplier with respect to the demand, narrowing down the usage of machine learning
to supervised learning. Deep learning is a subfield of machine learning that uses neural
networks. In this thesis, all the algorithms are divided into neural networks based, and the
ones which do not use neural networks for learning are considered traditional/conventional
machine learning based.

13

3.3.1 Neural Networks

Artificial neural networks, also known as neural networks and the most basic unit of
a neural network, i.e., perceptron [Ros58] were proposed by Rosenblatt, the pioneer of
neural networks, in 1958. A single layer perceptron for one instance s1 from the Table 3.3
is shown in the Fig. 3.1, the equation of which is:

ŷ = g(W T s1) (3.2)

where W is a vector of all the weights wn=1,2,3..5 and s1 is vector of dimension n and s11
denotes the value of f1 in s1, and g is an activation function that "defines the output of
a node given the input".

Figure 3.1: Single layer perceptron

A single layer perceptron has a limitation that it cannot solve non-linearly separable
problems, which can be very well proved by taking the example of the XOR function,
which cannot be represented by a single layer perceptron [GBC16]. This led to a solution
in the form of a multi-layer perceptron, which is shown in the Fig. 3.2. The equation
to get the output ŷ by the multi-layer perceptron, which is an extension of eq. 3.2 is as
follows: (For simplicity W = W T)

ŷ = g(W outg(W 1g(W 0s1))) (3.3)

where W l is the weight for the layer l-1 and in our example there is one input layer
l = 0, one output layer l = out and two hidden layers l = 1 and l = 2. g is a non-
linear activation function as stacking linear functions will make the entire network lin-
ear. The most common non-linear activation functions are sigmoid, where g(z) = 1

1+e−z
,

tanh, where g(z) = ez−e−z
ez+e−z

. However, the default non-linear activation function in most
of the systems is relu, where g(z) = max {0, z} as it is closely linear [GBC16]. For
simplicity, the bias b is not considered. However, after adding bias, the equation will
become,

ŷ = g(W outg(W 1g(W 0s1 + b0) + b1) + bout) (3.4)

Multi-layer perceptrons are also known as feedforward neural networks, and these are the

14

Figure 3.2: Multi-layer perceptron

type of neural networks that are explored in this thesis. All the neural networks in this the-
sis are implemented using the open-source library TensorFlow (TF) 2.0 [AAB+15].

When machine learning is applied to build a computer program that would rank the
suppliers according to the demand based on previous demand-supplier data, it can be
said that the suppliers are ranked using the Learning to Rank (LTR) approach. The
various LTR approaches are explained below after explaining the ranking problem this
thesis is trying to solve.

3.4 Bipartite ranking

In the Bipartite ranking problem, instances belong to either of the binary classes (+
(positive) and - (negative)), and the aim is to learn a ranking function that scores
the + positive instances with higher values than the - negative ones [Aga05]. The fol-
lowing example differentiates the bipartite ranking problem and the classification prob-
lem.

Figure 3.3: Bipartite ranking vs. Classification. The arrow is heading towards high.
There are 2 positive and 2 negative instances and two functions f1, f2 which
rank them and classify them with thresholds t1 and t2 respectively

15

Considering the example in Fig. 3.3, if f1 and f2 were classifiers then the classifica-
tion error for both of them would be 1/4. However, when it comes to ranking, f2
is better than f1 as it has positive instances at a higher rank than the negative in-
stances.

In this thesis, we are dealing with bipartite ranking.i.e. in the demand-supplier data, the
suppliers have binary library 1,0 to denote their relevancy to a demand.

3.5 Learning to Rank (LTR)

Training data

d1

s1
(1)

s2
(1)

sm(1)
(1)

.

.

.

y(1)

d2

s1
(2)

s2
(2)

sm(2)
(2)

.

.

.

y(2)

dn

s1
(n)

s2
(n)

sm(n)
(n)

.

.

.

y(n)

... Learning
System

model h

Ranking
System

d
s1
s2

sm

.

.

.

h(x)

d
s1
s2

sm

.

.

.

?

Test data Predictions
Figure 3.4: LTR Framework [Liu11]. The training data consists of n demands di(i =

1, ..., n) and associated supplier vectors s(i) =
{
s

(i)
j

}m(i)

j=1
m(i) is the number

of suppliers associated with a demand di. y(i) denotes the relevancy of the
suppliers. A learning system is used to obtain the model hypothesis h from
the hypothesis space. The hypothesis h is implemented along with a scoring
function f. h(s) = sort(f(s)). The scoring function provides a relevancy
score to each supplier, and this score is used for sorting the suppliers to
obtain the ranked list of suppliers.

Restating the definition of LTR, LTR is applying machine learning to solve the ranking
problem. [Liu11] states that the two important properties for any ranking method to be
classified as a Learning to Rank method are:

16

• Feature based

Each supplier is represented by feature vectors. In LTR methods, an optimal way
of combining these features is learned.

• Discriminative training

The four main components of discriminative training, as mentioned in [Mit99] are
the input space that consists of a list of suppliers (represented by a set of features)
associated with a demand, output space that consists of binary labels 0,1 with value
as 1 when supplier is relevant for the demand and 0 when supplier is not relevant
for the demand, hypothesis space that defines a class of functions that provides
a mapping between the input space and the output space and loss function that
measures the equality between the predictions given by the hypothesis and the
ground truth. Each LTR method has these four components.

Fig. 3.4 depicts the overall workflow of the LTR method for ranking suppliers given a de-
mand. The learning system can be built using various learning-to-rank algorithms. Based
on the four components of discriminative training, the LTR approaches are divided into
three categories, pointwise, pairwise, and listwise. These three approaches are explained
theoretically and with the help of a toy example below.

Consider the following toy example depicted in Table 3.1 in which there are two demands
where one demand has three suppliers, and another demand has four suppliers. This data
mimics the real-world demand-supplier data on which all the experiments in this work
are conducted. The relevancy of each supplier is given in terms of binary labels. The

demands Suppliers relevancy

d1

s
(1)
1 1

s
(1)
2 1

s
(1)
3 0

d2

s
(2)
1 0

s
(2)
2 1

s
(2)
3 1

s
(2)
4 0

Table 3.1: Toy example to explain LTR approaches. IT consists of two demands denoted
by d1, d2. For a demand di, the associated supplier is given by s

(i)
j , where

the lower bound of j is one and the upper bound is number of suppliers
associated with the demand. The ground truth for a supplier to be relevant
or irrelevant for the demand is given by relevancy and consists of binary labels
0,1 where 0 denotes the supplier being irrelevant and 1 denotes the supplier
being relevant.

demands d1, d2 contain the features (text data) as required by the customer to obtain the
suppliers which will fulfill those requirements. The suppliers contain the text data which
is nothing but the website content of the supplier.

Using the demand and content on the website of the suppliers, let’s say five features are
handcrafted. The outcome is represented in the following Table 3.2:

17

demands Suppliers f1 f2 f3 f4 f5 relevancy

d1

s
(1)
1 0.15 0.18 0.12 0.08 0.17 1

s
(1)
2 0.19 0.24 0.06 0.19 0.20 1

s
(1)
3 0.07 0.05 0.25 0.16 0.14 0

d2

s
(2)
1 0.12 0.13 0.12 0.13 0.15 0

s
(2)
2 0.16 0.16 0.06 0.19 0.14 1

s
(2)
3 0.13 0.12 0.06 0.16 0.09 1

s
(2)
4 0.15 0.10 0.31 0.06 0.07 0

Table 3.2: 5 handcrafted features {fi}i=1,..,5for each demand in the toy example 3.1

Pointwise

In the pointwise approach, given a demand, each supplier is scored independent of other
suppliers. As the ground truth in this thesis is binary, this task can be considered a
classification task. After training the classifier, during prediction, instead of classify-
ing the supplier as relevant or irrelevant, the probability of assigning the supplier to
the relevant class is used as a score for that particular supplier. This score is used to
decide the position of the supplier in the ranked list of suppliers. This approach does

Instance f1 f2 f3 f4 f5 relevancy
s1 0.15 0.18 0.12 0.08 0.17 1
s2 0.19 0.24 0.06 0.19 0.20 1
s3 0.07 0.05 0.25 0.16 0.14 0
s4 0.12 0.13 0.12 0.13 0.15 0
s5 0.16 0.16 0.06 0.19 0.14 1
s6 0.13 0.12 0.06 0.16 0.09 1
s7 0.15 0.10 0.31 0.06 0.07 0

Table 3.3: Pointwise approach data where no association between the suppliers and the
demand is seen, unlike the data in Table 3.2

not consider the association of suppliers to a particular demand. Hence irrespective of
the demand, each row becomes an instance which is shown in the instance column in
Table 3.3

Pairwise

In the pairwise approach, pairs of suppliers belonging to a particular demand are used to
learn the ranking. This approach models the ranking as a pairwise classification task. This
is done by swapping every supplier that belongs to a particular demand, and the impact of
this swap is used to calculate the new set of labels on which a regressor will be fit. This im-
pact can be calculated by taking any ranking evaluation metric 3.6. This transformation is
applied to the toy example 3.2. This calculated impact is denoted as lambda in the trans-
formed table. The lambda for all the instances is initialized to 0, and all the suppliers are
sorted as per their relevancy. This is shown in the Table 3.4.

18

demands Sorted Suppliers f1 f2 f3 f4 f5 relevancy lambda

d1

s
(1)
1 0.15 0.18 0.12 0.08 0.17 1 0

s
(1)
2 0.19 0.24 0.06 0.19 0.20 1 0

s
(1)
3 0.07 0.05 0.25 0.16 0.14 0 0

d2

s
(2)
2 ->s

(2)
1 0.16 0.16 0.06 0.19 0.14 1 0

s
(2)
3 ->s

(2)
2 0.13 0.12 0.06 0.16 0.09 1 0

s
(2)
1 ->s

(2)
3 0.12 0.13 0.12 0.13 0.15 0 0

s
(2)
4 0.15 0.10 0.31 0.06 0.07 0 0

Table 3.4: Pairwise approach data. All the suppliers associated with demand are sorted
in Table 3.2 wrt. to relevancy such that for two suppliers si

j and si
k belonging

to a demand di,j > k, if relevancy of si
j is 1 and relevancy of si

k is 0. The
impact column is denoted by lambda, which is initialized to 0

For simplicity the impact is calculated using prec@k 3.7 with k=2. The algorithm for
transformation is as follows:

1: for each demand di,
2: sort the suppliers based on relevancy
3: for each supplier sij,
4: for each supplier sik,
5: if k>j then
6: swap(sij,sik)
7: calculate prec@2 after this swap
8: prec@2diff = idealprec@2 − prec@2
9: lambda[sij]+ = prec@2diff

10: lambda[sik]− = prec@2diff
11: end if

For demand d1, the ideal prec@2 is 1.0 and if supplier s
(1)
1 is swapped with s

(1)
2 , the

prec@2 remains unchanged i.e. 1.0. The difference in the ideal prec@2 and the computed
prec@2=1.0-1.0=0, hence the lambda still remains 0. If supplier s

(1)
1 and s

(1)
3 are swapped,

the prec@2 changes to 0.5. The difference between the ideal prec@2 and computed prec@2
is 0.5 and lambda for s

(1)
1 becomes 0+0.5=0.5 and for the supplier s

(1)
3 it is 0-0.5=-0.5.

When s
(1)
2 is swapped with s

(1)
3 , the prec@2 is 0.5 which differs from the ideal prec@2 by 0.5

and the updated lambda for s
(1)
2 is 0+0.5=0.5 and for s

(1)
3 , it is -0.5-0.5=-1.0. This is also

done for demand d2 and the transformed table is represented in the Table 3.5. A regression
tree is then fit on this transformed data and tries to predict ’lambda.’ And when multiple
regression trees are fit, the whole algorithm of LambdaMART is formed where MART
stands for Multiple Additive Regression Trees and ’lambda’ in LamdaMART [Bur10]
denotes this impact.

The limitation of the pairwise approach is that the relative ordering between only two
suppliers is considered, which may fail to capture the ordering of all the suppliers in the
final ranked list.

19

demands Sorted Suppliers f1 f2 f3 f4 f5 relevancy lambda

d1

s
(1)
1 0.15 0.18 0.12 0.08 0.17 1 0.5

s
(1)
2 0.19 0.24 0.06 0.19 0.20 1 0.5

s
(1)
3 0.07 0.05 0.25 0.16 0.14 0 -1

d2

s
(2)
1 0.16 0.16 0.06 0.19 0.14 1 0.5

s
(2)
2 0.13 0.12 0.06 0.16 0.09 1 0.5

s
(2)
3 0.12 0.13 0.12 0.13 0.15 0 -1

s
(2)
4 0.15 0.10 0.31 0.06 0.07 0 -1

Table 3.5: Pairwise approach data. Transformation of Table 3.4 after applying the trans-
formation algorithm 11

demands Instance Suppliers f1 f2 f3 f4 f5 relevancy

d1 1
s

(1)
1 0.15 0.18 0.12 0.08 0.17 1

s
(1)
2 0.19 0.24 0.06 0.19 0.20 1

s
(1)
3 0.07 0.05 0.25 0.16 0.14 0

d2 2

s
(2)
1 0.12 0.13 0.12 0.13 0.15 0

s
(2)
2 0.16 0.16 0.06 0.19 0.14 1

s
(2)
3 0.13 0.12 0.06 0.16 0.09 1

s
(2)
4 0.15 0.10 0.31 0.06 0.07 0

Table 3.6: Listwise approach data. The training set consists of
{
(s(i), relevancy(i))

}2

i=1

where s(i) =
{
s

(i)
j

}m(i)

j=1
and relevancy(i) =

{
relevancy

(i)
j

}m(i)

j=1
; m(i) denotes the

number of suppliers associated with demand di. Hence, all the three suppliers
belonging to demand d1 form instance 1 and the four suppliers belonging to
demand d2 form instance 2

Listwise

In the listwise approach, the aim is to determine the optimal ordering of all the suppliers
associated with their respective demands. In this approach, the loss function considers
the positions of suppliers in the ranked list of all the suppliers belonging to the same
demand group, unlike pointwise and pairwise.

In the pairwise approach, the training data is transformed, and then the learning takes
place, whereas in the listwise approach, the transformation of ground truth and the pre-
dicted scores takes place, and then the learning takes place. The scores of each supplier
given by the model and the relevancy of each supplier as marked by the domain ex-
perts are transformed into a probability distribution. The learning happens with the
aim of minimizing the difference between the two probability distributions. Permutation
probability and top one probability are the two models for the transformation of the
scores.

Referring to Table 3.6, the transformations of the scores for the suppliers associated with
demand d1 are shown below:

20

Therefore, the suppliers to rank are s(1) = (s(1)
1 , s

(1)
2 , s

(1)
3) The number of possible permu-

tations for these three suppliers are 3! and are as follows:

(s(1)
1 , s

(1)
2 , s

(1)
3)

(s(1)
1 , s

(1)
3 , s

(1)
2)

(s(1)
2 , s

(1)
1 , s

(1)
3)

(s(1)
2 , s

(1)
3 , s

(1)
1)

(s(1)
3 , s

(1)
1 , s

(1)
2)

(s(1)
3 , s

(1)
2 , s

(1)
1)

The six permutations above are denoted by Ω6, π denotes a single permutation, and π(k)
is the supplier at position k in the respective permutation. Let z = (z1, z2, ...zn) depict
the score given by a model to each of the suppliers in π, and zj is the score given by the
model for the supplier at jth position. The probability of one of the permutations is given
by the formula:

Pz(π) =
m(i)∏
j=1

ϕ(zπ(j))∑m(i)
k=j ϕ(zπ(k))

(3.5)

where m(i) is the number of suppliers in one permutation set, and for simplicity, ϕ(x) =
ex

Assuming the scores predicted for the three suppliers by a model as 1.62 for s
(1)
1 , -0.61

for s
(1)
2 , and -0.53 for s

(1)
3 and based on the eq. 3.5, the probability of permutation for

(s(1)
1 , s

(1)
2 , s

(1)
3) is:

Pz((s(1)
1 , s

(1)
2 , s

(1)
3)) = ∏3

j=1
e

zπ(j)∑3
k=j

e
zπ(k)

Pz((s(1)
1 , s

(1)
2 , s

(1)
3)) = ∏3

j=1
e

zπ(j)∑3
k=j

e
zπ(k) = e

s
(1)
1

e
s

(1)
1 +e

s
(1)
2 +e

s
(1)
3

. e
s

(1)
2

e
s

(1)
2 +e

s
(1)
3

. e
s

(1)
3

e
s

(1)
3

= 0.39

Similarly, calculating it for the remaining five sets, the permutation probability is as
follows:

(s(1)
1 , s

(1)
2 , s

(1)
3)− > 0.39

(s(1)
1 , s

(1)
3 , s

(1)
2)− > 0.42

(s(1)
2 , s

(1)
1 , s

(1)
3)− > 0.078

(s(1)
2 , s

(1)
3 , s

(1)
1)− > 0.009

(s(1)
3 , s

(1)
1 , s

(1)
2)− > 0.085

(s(1)
3 , s

(1)
2 , s

(1)
1)− > 0.009

The top one probability for s
(1)
2 is 0.07+0.009=0.087. However, calculating permutation

probability can be practically inefficient; hence in the paper [CQL+07], top one probability
was proposed using the following equation:

21

Pz(j) = ezj∑m(i)
k=1 ezk

(3.6)

For s
(1)
2 , the top one probability using the equation 3.6 is 0.087. Similarly the top

one probabilities of s
(1)
1 and s

(1)
3 are 0.82 and 0.095. The probability distribution of

the ground truth which is given by relevancy is also calculated using relevancy(1) =
(relevancy

(1)
1 , relevancy

(1)
2 , relevancy

(1)
3) = (1, 1, 0). The two probability distribution for

predicted scores and the relevancy scores is shown in Fig. 3.5. Any loss function that mea-
sures this difference in distribution can be used, like Kullback- Leibler (KL) divergence.
In ListNet [CQL+07], the model is a neural network, listwise loss cross-entropy is used,

Figure 3.5: Probability distribution true vs. predicted

and Gradient descent is the algorithm.

The LTR approaches are summarized in the Fig. 3.6 and Table 3.7.

Figure 3.6: Training comparison of pointwise, pairwise and listwise LTR approaches. In
the pointwise, each supplier is consumed one by one, and a loss is obtained;
in pairwise, pairs of suppliers belonging to one demand are consumed to
obtain the loss, and in the listwise, all the suppliers belonging to a demand
are used together to obtain the loss for training

22

Approach Components Description

Pointwise

Input space feature vector of supplier
Output space relevance degree of each supplier

Hypothesis
space

scoring functions which take feature
vector from input space
and predict relevancy of each supplier

Loss function
as the ranking task is modeled as a
classification task, the corresponding
loss function is classification loss

Pairwise

Input space feature vectors of pairs of suppliers
Output space pairwise preference between each pair of supplier

Hypothesis
space

bi-variate functions that take pairs of suppliers as
input and, outputs the relative ordering between them.

Loss function classification loss on pair of suppliers

Listwise

Input space feature vectors of all the suppliers of a demand
Output space relevancy of all the suppliers of a demand

Hypothesis
space

multivariate functions that take group of suppliers
as input and predict their relevancies

Loss function defined on the basis of approximation
or bound of widely used IR evaluation measures

Table 3.7: Theoretical comparison between pointwise, pairwise, and listwise LTR ap-
proaches w.r.t the input space, output space, hypothesis space, and the loss
function

3.6 Evaluation metrics

In the case of ranking, unlike the classification task, even the positions of an item in the
ranked list, along with the relevancy, matters. Hence, accuracy cannot be used as an
evaluation metric. Thus, the evaluation metrics Precision@k and Mean Average Precision
that are the evaluation metrics for information retrieval systems are formulated based on
the paper [Liu11] as follows.

Precision@k (Prec@k) Prec@k is calculated as follows:

prec@k = {number of relevant suppliers till position k}
k

(3.7)

Mean Average Precision (mAP)

AvgPrec(d)@n =
∑m

k=1 P rec@k(d).bk

#{total number of relevant suppliers for d}

where m is the total number of suppliers associated with the demand d, bk is 1 if the
supplier at position k is relevant and 0 otherwise.

mAP@n =
∑

D
AvgP rec(d)@n

D

23

when n = m, then mAP@n = mAP

These are the evaluation metrics used for evaluating all the experiments that were con-
ducted in this thesis.

3.7 Explainable AI (xAI)

3.7.1 SHapley Additive exPlanations (SHAP)

The game theory forms the basis of SHAP values [LL17] and the game here is to reproduce
the predictions given by the model, and the players are the features included in the model.
SHAP quantifies each feature’s contribution to the outcome of the model per instance.
The idea for calculating SHAP values is that every possible combination of features will
be used to determine the importance of a single feature.

Figure 3.7: Power set for 5 features

Considering the 5 features in the toy example, the combination of all the features can be
represented as a power set as shown in Fig. 3.7 where each node represents one combi-
nation(represented in square blocks) of features and each edge represents the inclusion of
a feature that was absent in the previous combination (one level above). SHAP needs to
train distinct models with the same hyperparameters for each of the combinations of fea-
tures. For simplicity, each node is one distinct model. Each edge represents the marginal
contribution of each feature to the outcome of the model. Consider an unknown instance
given to the model for prediction and later for an explanation by SHAP. Imagining 32
different classifiers turned rankers have been trained on the same training data, each node

24

has a score for that instance given that particular combination of features. The SHAP
value for feature f1 is calculated as follows:

The edges which connect the nodes such that the upper node does not contain the feature
f1 and the lower node contains the feature f1 are only considered, which are highlighted
in the Fig. 3.7. The weight w given to each edge is the reciprocal of the total number of
edges at the same level.

At level l=0, a model with no features will give 0.5 for the instance to belong to the group
with relevancy=1.

At level l=1, the prediction of the model with just feature f1 is 0.3. Implies that the
marginal contribution of feature f1 to the model containing just feature f1 is 0.3-0.5=-
0.2.

At level l=2, the marginal contributions of f1 are 0 (0.2-0.2), 0.2 (0.5-0.3), 0 (0.6-0.6),
0(0.4-0.4).

At level l=3, the marginal contributions of f1 are 0 (0.3-0.3), 0(0.4-0.4), 0.3 (0.6-0.3),
0(0.5-0.5), 0.1 (0.4-0.3), 0(0.5-0.5).

At level l=4, the marginal contributions of f1 are 0.2 (0.5-0.3), 0.1 (0.4-0.3), 0.1 (0.5-0.4),
0.1 (0.6-0.5)

At level l=5 the marginal contribution of f1 is 0.3 (0.7-0.4).

And the overall SHAP value for feature f1 is a weighted average of all the marginal
contributions of f1 at each level where weight is w.

SHAP (f1) = (−0.2 ∗ 1
5) + (0.2 ∗ 1

20) + (0.3 ∗ 1
30) + (0.1 ∗ 1

30) + (0.2 ∗ 1
20) + (0.1 ∗ 1

20) + (0.1 ∗
1
20) + (0.1 ∗ 1

20) + (0.3 ∗ 1
5) = 0.0683

As the feature importance for each feature is calculated using the above idea, this gives
feature importance relative to other features per instance, i.e., local, unlike the global fea-
ture importance given by some models like Random forest [KJ+13], [GMR+18] which is
only global. SHAP is a better option for this work as it gives both local and global feature
importance, unlike the other SOTA model-agnostic interpretability tool, LIME which may
require some workaround to obtain global interpretability [RSG16].

25

4 Used Technologies

4.1 Algorithms

All the LTR approaches can be solved using either conventional machine learning or deep
learning algorithms. All the algorithms that were implemented in this thesis are explained
as follows.

4.1.1 Traditional Machine learning for LTR

In this thesis, machine learning algorithms that do not use Neural Networks are considered
traditional machine learning algorithms. This includes pointwise LTR using Random
Forest Classifier, pointwise LTR using XGBoost, and pairwise LTR using Random Forest
Classifier. These are explained in detail as follows.

Pointwise LTR using Random Forest Classifier

Random Forest [Bre01] Classifier is a machine learning algorithm that takes the data
input and predicts the class to which the input might belong. In the case of the prob-
lem statement in this thesis, based on the input supplier’s features, the Random Forest
Classifier will assign the supplier as relevant or irrelevant.

Following the explanation above, the question that is raised is how can a classifier be
converted into a ranker? The classifier is transformed into a ranker by using the class
probability of the supplier being relevant [FM08]. Consider a classifier is trained, and
when this classifier is used for predictions on unseen data, instead of assigning binary
labels, the probability that the classifier set for an instance to be positive is considered as
the ranking score for that instance. Based on the descending order of their ranking score,
all the instances in the unseen data are sorted. Then ranking evaluation measures are
applied to obtain the performance of that particular model.

Before understanding Random Forest, it is important to understand the building blocks
of the Random Forest, decision trees, also a supervised machine learning algorithm. The
three components of a decision tree are a root node, decision nodes, and leaf nodes. A
root node is the starting point, where the splitting starts. A root node is split to form
decision nodes, and these nodes further divide to form decision nodes or leaf nodes which
will not split any further. A split is decided based on the purity of the split. This purity
is calculated using the metrics Gini Index and Entropy

26

These metrics are one of the hyperparameters for decision trees. In this way, a decision
tree is constructed using these impurity measures for the instances with given features.

Figure 4.1: Random Forest. Bootstrapping is used to create subsets of the training
dataset and the features with replacement, and decision trees are trained on
these individual subsets. The predictions given by each of the decision trees
are aggregated to form the final prediction.

Random Forests are a combination of multiple decision trees that extends the principle of
bagging [Bre01], which is an ensemble technique. The difference between Random Forests
and Bagging is that in Random Forests, along with a subset of training data, subsets of
features are also sampled with replacement. In contrast, in bagging, only subsets of
training data are sampled with replacement [Bre01]. Bootstrapping the features reduces
the correlation between the various decision trees and thus, the variance. A random forest
is represented in Fig. 4.1

The hyperparameters that are associated with Random Forest Classifier and were tuned
while building the ranking model are stated below:

1. criterion These are nothing but the metrics Gini Index and Entropy that can be
chosen to test the purity of the split.

2. max_depth As the name suggests, it specifies the maximum depth of the tree. If
None, the tree grows until all the leaf nodes are pure or until all the leaf nodes
contain no more than min_samples_split.

27

3. min_samples_split The minimum number of samples needed for the node to be
able to split further.

4. n_estimators The total number of decision trees

5. max_features The maximum number of features that are taken into account when
finding the best split.

Like bagging, the other ensemble technique in machine learning is boosting which is
explained in the following section.

Pointwise and Pairwise LTR using XGBoost

Boosting can be understood by comparing it to bagging. The difference between bagging
and boosting is that in bagging, the instances in the data are sampled with replacement.
However, in boosting, the instances are given weight and are sampled on this weight.
The intuition is to sample instances that were mispredicted more often by assigning them
higher weight. Because of this weighting of the instances, the entire process of boosting
becomes sequential, unlike bagging, which can be parallelized. Boosting is redefined by
Gradient boosting to minimise the objective function of the model by adding weak learners
(e.g., a single decision tree) using gradient descent. The pseudocode for Gradient boosting
is as follows:

Training set: {(si, ri)}n
i=1, n is total number of instances, LossFunction=Loss(r, F (s))

and total number of iterations=M, m ∈M m=1
1: Initialise model with a constant value

F0(s) = arg minγ

∑n
i=1 Loss(ri, γ)

2: while m ̸= M do
3: Compute pseudo-residuals

pim = −
[

∂Loss(ri,F (si))
∂F (si)

]
F (s)=Fm−1(s)

for i = 1 to n

4: Fit a regression tree hm(s) to pseudo-residuals i.e. with new train set ={(si, pim)}n
i=1

5: Compute γm using the following optimisation equation:
γm = argminγ

∑n
i=1 Loss(ri, Fm−1(si) + γ hm(si))

6: Update the model: Fm(s) = Fm−1(s) + γm hm(s)
7: N ← N + 1
8: end while
9: Output FM(s)

The training step from step3 to step7 in the above pseudocode trains the next learner on
the Gradient of error based on the predictions loss of the previous learner. In layman’s
terms, the mistakes of the prior model are corrected during training.

XGBoost is an abbreviation for ’eXtreme Gradient Boosting’ and is a scalable end-to-end
tree boosting system [CHB+15]. XGBoost implements the Gradient boosting algorithm
efficiently by using second-order derivatives and advanced regularisation. The overall
workflow of XGBoost for LTR is shown in Fig. 4.2

The gradient boosting algorithm requires an objective or loss function that needs to be
minimized.

28

Figure 4.2: XGBoost workflow for LTR training

For training pointwise LTR using XGBoost, the objective function ’binary:logistic’ is
used. During prediction, this classifier is converted into a ranker by considering the
probability that the classifier assigns for an instance to be positive as the score for that
instance. For training pairwise, XGBoost provides a wrapper XGBRanker which imple-
ments LambdaMART [Bur10] when the objective function ’rank:pairwise’ is given. The
working of LambdaMART has already been explained in the pairwise part of the subsec-
tion 3.5.

The hyperparameters that are associated with XGBoost and were tuned while building
the ranking model are stated below:

1. learning_rate This is used for shrinking the feature weights after each step to avoid
overfitting, analogous to the learning_rate in Gradient Boosting Trees.

2. gamma The minimum reduction in the loss that is required before doing a split.

3. min_samples_split The minimum number of samples needed for the node to be
able to split further.

4. max_depth Analogous to Gradient Boosting Trees, the maximum depth of the tree

5. subsample It gives the proportion of observations that needs to be randomly sampled
at every iteration.

6. colsample_bytree It denotes the subsampling of the features/columns while con-
structing each tree.

7. scale_pos_weight It is used to tackle class imbalance.

8. objective It denotes the loss function that needs to be minimized.

4.1.2 Neural Networks for LTR using tensorflow-ranking

TF-Ranking Architecture

TensorFlow is a popular open-source library for training, evaluation, and serving of ma-
chine learning and deep learning models, and TensorFlow Ranking is built on top of
it [PBW+19]. TensorFlow framework supports distributed training of neural networks
via TensorFlow Estimator [CHH+17]. The estimator encapsulates two components: in-
put_fn and model_fn. Hence the training block of 4.3 is structured using these two
components.

29

Figure 4.3: TF-Ranking Architecture [PBW+19]

• Training

Input Reader input_fn

Raw data is passed as an input to the input_fn, which returns the required type of
tensors along with the labels. input_fn block is present during training and serving.
The major difference is that in serving input_fn, the inputs are set up in a single
batch, unlike the training input_fn where the batch size can be specified.

Feature Transformation transform_fn

The tf-ranking architecture requires List_Size or Group_Size, which denotes the
number of candidate suppliers associated with a demand. The number of candidate
suppliers associated with a demand varies. However, tf-ranking architecture requires
a fixed number. Tf-ranking architecture handles this by either trimming the number
of candidate suppliers associated with a demand if the number exceeds the specified
List_Size or padding if the number of candidate suppliers associated with a demand
are less than the List_Size. The transform_fn takes the output from the input_fn,
List_Size or Group_Size and forms dense tensors.

Scoring Function score_fn

The score_fn outputs the scores internally during training and inference. The neural
network used for the ranking is defined in the score_fn.

Ranking Loss make_loss_fn

The ground truth (labels) and the scores computed using the score_fn are inputs
by the ranking loss function to return a weighted loss value.

Ranking Metrics make_metrics_fn

Tf-ranking architecture provides a metric function that takes the predictions and
the ground truth label as input and provides a scalar value that denotes the overall
performance of the model. More than one metric in the metric function can be
defined. Precision, Recall, mean average precision, and so on can be defined using
the metric function.

30

Ranking Head

The make_metrics_fn and make_loss_fn which are Estimator compatible are en-
capsulated in the ranking head.

model_fn

From Fig. 4.3, it can be seen that the transform_fn, score_fn, ranking head which
encapsulates make_metrics_fn and make_loss_fn are combined in the model builder,
model_fn.

• Serving

During training, the ranking model receives a set of candidate suppliers associated
with a demand. However, while serving, it may receive a group of independent
candidate suppliers to be ranked. Tf-ranking architecture handles this discrepancy
by exporting the graph generated by the model_fn as a SavedModel [OFG+17].

Learning in Neural Networks

As stated earlier, in a feedforward Neural Network, the input’s initial information prop-
agates through each layer, and finally, an output is obtained. This is known as forward
propagation [GBC16] and the stopping point for this process is when a scalar loss is
produced. This loss calculates how different the prediction is from the ground truth.
The backpropagation algorithm then propagates this loss backward for calculating gra-
dients and using the gradient descent algorithm, the weights and biases are updated,
and in this way, the learning happens in the Neural Networks. The overall base archi-
tecture for all the LTR approaches using tensorflow-ranking is the same as explained
in the architecture 4.3 and the critical difference lies in the loss function for each ap-
proach. The loss functions used in this thesis are mentioned in the respective subsec-
tions.

Pointwise LTR using tensorflow-ranking

The loss function for the pointwise approach is MeanSquaredLoss(MSELoss) which is
given in the equation below:

MSELoss(y, ŷ) = 1
n

∑n
i (yi − ŷi)2

where n is number of dimensions and yi and ŷi are the ground truth and predicted output
respectively.

Pairwise LTR using tensorflow-ranking

PairwiseHingeLoss(y, ŷ) = ∑
i

∑
j(I[yi > yj]max(0, 1−(ŷi−ŷj)

PairwiseLogistciLoss(y, ŷ) = ∑
i

∑
j I[yi > yj] log(1+exp(−(ŷi−ŷj)))

PairwiseSoftZeroOneLoss(y, ŷ) = ∑
i

∑
j I[yi > yj](1−sigmoid(ŷi−ŷj))

In all the equations for Pairwise Loss functions, I[yi > yj] is 1 if yi > yj, 0 other-
wise.

31

Listwise LTR using tensorflow-ranking

ListMLELoss(y, ŷ) = − log(P (πy | ŷ))

where P (πy | ŷ) is the Plackett-Luce probability of a permutation and is conditioned on
ŷ. Here πy represents a permutation of items ordered by the relevance labels, the ties of
which are broken randomly.

ListwiseSoftmaxLoss(y, ŷ) = ∑
i yi · log

(
exp(ŷi)∑
j

exp(ŷj)

)
The hyperparameters that are associated with LTR using tensorflow-ranking and were
tuned are stated below:

1. learning_rate It specifies how much to change the model in response to the estimated
error while updating the weights of the model

2. number of hidden layers

3. number of neurons in each hidden layer

4. non-linear activation function

5. loss function

4.2 Feature Selection Methods

Features are essential in any machine learning model’s performance, and LTR methods are
feature-based. Hence, it seems necessary to find a good set of features.

Filter Method

Greedy Feature Selection-GAS Algorithm

Let’s consider the toy example from the Table 3.2 and calculate the importance score for
each feature by setting a threshold of 0.14 (mean of all values)

f1:

∀f ∈ f1 if f > threshold then relevancy = 1 else 0

Predicted relevancy=[(1,1,0),(0,1,0,1)] accuracy=0.71

∀f ∈ f1 if f < threshold then relevancy = 1 else 0

Predicted relevancy=[(0,0,1),(1,0,1,0)] accuracy=0.28

Importance of f1=0.71

Similarly we calculate the importance of f2=0.85, f3=0.85, f4=0.71, f5=0.57 and the
respective predicted relevancies are as follows:

f2=[(1,1,0),(0,1,0,0)]

32

f3=[(1,1,0),(1,1,1,0)]

f4=[(0,0,1),(0,1,1,0)]

f5=[(1,1,0),(1,0,0,0)]

The weight between any two nodes is calculated by comparing the ranking result using
Kendall tau.This results in the following graph:

Let S be the set of selected features and let the number of features to be selected be t. The
weights of each node are updated using the following equation:

wj ← wj − eki,j ∗ 2c where j ̸= ki and ki is a node from selected nodes

The working of the GAS algorithm with t=3 and c=0.1 is explained below.

Step 0:

S0 = {}

Step 1:

Select the node with the largest weight. f2 and f3 both have the same weights. Let’s
select f2.

S1 = {f2}

Let’s update the weights of other nodes based on their similarity to f2.

Weight of f1= 0.71-0.75*0.2=0.56

Weight of f3=0.85-0.55*0.2=0.74

Weight of f4=0.71-(-0.167)*0.2=0.7434

Weight of f5=0.57-0.42*0.2=0.486

We remove f2 from the graph and all the connections that contain the node f2 and end
up with the following graph:

33

Step 2:

Select the node with the largest weight i.e .f4 .

S2 = {f2, f4}

Let’s update the weights of other nodes based on their similarity to f4.

Weight of f1= 0.56-(-0.42)*0.2=0.64

Weight of f3=0.74-(-0.09)*0.2=0.758

Weight of f5=0.486-0.55*0.2=0.376

We remove f4 from the graph and all the connections that contain the node f4 and end
up with the resulting graph:

Step 3:

Select f3.

S2 = {f2, f4, f3}

Stop here as the required number of features are obtained.

Clustering based method

34

We obtain the similarity weights between features using Kendall Tau, just like the graph
based approach. After applying the clustering algorithm k-means [Llo82] with k=2, let’s
assume that the following two clusters are formed:

Cluster1= f1,f2,f3

Cluster2= f4,f5

Now we select features from both the clusters with the highest weight. This weight
can be obtained by calculating the mAP or accuracy after using only that feature to
perform the ranking. Another way is to use a linear model to use the features with
the highest weight. By using the former approach, we choose f2 and f3 from the first
cluster and f4 from the second cluster based on the weights assigned in the Graph based
approach.

Wrapper Method

‘The main difference between this approach and the filter approach is that the selection
of features in the wrapper is based on the effectiveness of evaluation measures that will be
optimized by the learning procedure’ [SK18]. In simple terms, the features that impact the
learning approach are selected. For example, in XGBoost Classifier and Random Forest
Classifier, a feature importance list can be generated. This generated feature importance
list can select the top-n features based on the requirement.

4.3 Sampling Strategies

In our case, the relevant suppliers form the minority class and the irrelevant suppliers
form the majority class.

Undersampling for traditional machine learning models- In this technique, for
each demand, the minority class suppliers were sampled without replacement with a size
equal to that of the majority class suppliers associated with that demand. The demands
which had the count of irrelevant suppliers less than the count of relevant suppliers were
taken as it is.

Over sampling for traditional machine learning ranking models- In this tech-
nique, for each demand, the minority class suppliers were sampled with replacement with a
count equal to the majority class suppliers associated with that demand

For deep learning based ranking models, tensorflow-ranking architecture requires an equal
number of items associated with a query [PBW+19] denoted by the group_size. Hence
slightly different sampling strategies are applied, which are explained below.

Undersampling in deep learning based ranking models- In this technique, group_size
of 200 is taken because almost all the demands have the number of relevant suppliers less
than 150, which is shown in Fig. 5.6 All the relevant suppliers are taken for each demand,
and then 150 irrelevant suppliers are sampled without replacement. The relevant suppliers
and the sampled irrelevant suppliers are further sampled without replacement with a size
of 200. For the demands, which have more relevant suppliers than irrelevant suppliers,
sampling with replacement with a size of 200 is done.

35

Padding- In this technique, the group_size of 800 is taken as the average number of sup-
pliers associated with the demands is 600 5.2. For each demand, all the relevant suppliers
are considered, and the irrelevant suppliers are sampled without replacement with the
sample size of (800-the number of relevant suppliers). Suppose the number is not equal to
800. In that case, dummy suppliers with a feature vector of all zeroes and relevancy label
as -1 are added to the list of suppliers associated with that demand. tensorflow-ranking
framework ignores the instances with label -1.

4.4 Benchmarking

A caveat is that the test data consists of only already marked/labeled suppliers that
number up to 600 for each demand in the test set. However, around 5000 suppliers
for one demand are directed to the ranking model in production. Hence, the results
obtained after evaluating the ranking models on the test set should be considered with
a grain of salt. To tackle this issue, before selecting the champion model amongst the
competing models, a user study is conducted with the help of domain experts. Four
domain experts were requested to provide at least one peculiar demand they worked on
after 04-2021, as the data used to build and evaluate the competing ranking models dated
till 04-2021. Three domain experts provided one demand each, and one domain expert
provided two demands, so a total of 5 demands created in the months of 10-2021 and
11-2021 were used in this human-based evaluation. Each competing model then provides
the ranked list of suppliers for each of the five demands. The top 100 suppliers are then
given back to their corresponding domain experts to check the Precision@100 for each
model.

36

5 Demand Processing Pipeline; Design,
Implementation and Evaluation

5.1 Data

Data is the core part of machine learning tasks. Implying it is a core component of the
LTR tasks as well, that this thesis is trying to solve. In the paper, [WS], a document
filtering step is applied instead of ranking and retrieving all the documents directly for
a query. In this filtering step, documents are filtered w.r.t query. Ranking and retrieval
are then performed on this query and the filtered document sets. The total number
of suppliers that are dealt with by Scoutbee is approximately 1 billion. Ranking and
retrieving these 1 billion suppliers for each demand is not at all a feasible solution. Hence,
a filtering step is applied to form a demand-suppliers set on which the ranking algorithms
are used.

5.1.1 Raw Data

Figure 5.1: Graphical representation of demand data. A demand is associated with
properties and a list of potential candidate suppliers. The demand properties
are the requirements given by the customer. Suppliers must be ranked based
on how much they match the demand’s properties.

37

The demand property product consists of the keywords for the products the customer
is looking for. company_type represents whether the customer is looking for a Manu-
facturer, Distributor, Online shop, Service provider, or Research facility, or Publisher.
The customer may specify the location where the suppliers they are looking for must
operate, given by the property country. score_keywords are the keywords filled by
the domain experts, enhancing the product property of the demand. They are random
adjectives or keywords describing similar products or even keywords that repeatedly ap-
pear on product pages of the suppliers that are being looked at. The customers may
mention dealing with only suppliers with specific certificates in which the certificate
property is linked to the demand with requires_certificate. The customers may men-
tion good-to-have certificates where the certificate property is linked to the demand
with prefers_certificate . application_areas indicate industrial application the cus-
tomer is looking for. manufacturing_processes include the technical processes used
to build the product. Similar to certificates, sometimes manufacturing_processes are
required, and sometimes they are optional/preferred. search_phrase is formed by com-
bining two keywords with AND, OR. search_phrase is a superset which includes the
keywords from company_type, score_keywords, certificate, application_areas, and
manufacturing_process. The supplier node consists of the domains of website content
by crawling the domain of the supplier till a certain depth. The supplier can be relevant
to the demand which is denoted by the link has_relevant_candidate_supplier or it can be
marked as irrelevant which is denoted by the link has_irrelevant_candidate_supplier to
the demand. This is used as the binary ground_truth for the models.

Considering an example demand of "Vacuum Cleaners".

• product - Vacuum cleaner, dusting equipment

• company_type - Manufacturer

• country - Germany

• score_keywords - cleaning, dusting, filter suction power

• application_areas - Household appliances

• manufacturing_processes(required) - Injection moulding

• manufacturing_processes(optional) - motor assembly

• certificate(required) - ISO 9001

• certificate(optional) - ENT 4521

• search_phrases - "Vacuum cleaner" AND "manufacturer", "Vacuum cleaner"
AND "ISO 9001"

• supplier - [’abc.com’,’xyz.de’]

The aforementioned demand features are used to generate features that will be consumed
by the experimented ranking models. The raw data consists of 352 demands till 04-2021.
Each demand has a varied number of candidate suppliers. On average, 600 suppliers
(only marked ones) are associated with each demand which is shown in Fig. 5.2. The
demand-supplier dataset is split into training set, validation set and test set based on the
date of creation of the demand. The split is represented in Fig. 5.3. In the Fig. 5.4, the

38

Figure 5.2: Demand-supplier count distribution. 50% of the demands have less than 600
suppliers associated with them. 8% of the demands have more than 1200
suppliers associated with them.

Figure 5.3: Dataset split into train,validation, and test. The train set consists of 290
demands, the validation set consists of 23 demands and the test set consists
of 32 demands.

frequency of demands across months is shown. Fig. 5.5, Fig. 5.6, and Fig. 5.7 showcase the
class imbalance of the demand-supplier dataset.

5.1.2 Feature Generation using OpenSearch

The supplier website content to a depth of 100 pages is indexed in to OpenSearch. The
domain of the supplier, URL of the webpage, title of the webpage, and the webpage’s
description are considered for indexing. For example a supplier with domain abc.com may
contain webpages which have URL like https://abc.com/product with a description of
the product served by abc.com. It is important to note that websites do not follow a fixed
structure; hence, when generating the features, all the webpages indexed for a domain are
queried instead of doing a webpage URL-specific query. Elaborating further, for querying
the products served by abc.com, all the indexed webpages for the domain abc.com are
queried and not just https://abc.com/product.

The two ways in which the features are generated are by a partial match of the key-
words and by doing an exact match. In a partial match setting, each space-separated

39

Figure 5.4: Date-wise demand distribution. The demands that were created till 02-2021
are included in the training set, from 02-2021 to 03-2021 are included in the
validation set and from 03-2021-04-2021 are included in the test set.

Figure 5.5: Ground truth distribution. Only 18% of the suppliers belong to class 1, i.e,
most of the suppliers are irrelevant in the dataset.

Figure 5.6: Relevant suppliers across demands. 80% of the demands have less than 150
relevant suppliers associated with them.

40

Figure 5.7: Irrelevant suppliers across demands. 86% of the demands have upto 1000
irrelevant suppliers associated with them.

token is considered one keyword. In an exact match setting, the comma-separated to-
ken is regarded as one keyword. These space-separated tokens and comma-separated
tokens are passed to open search, and for each demand characteristic, an overall to-
tal_hits and max_score are obtained. When space-separated tokens are used, they will
be addressed as being generated by the token-based approach of feature generation and
the case of comma-separated tokens as the phrase-based approach of feature genera-
tion.

total_hits = Total number of hits across all the keywords in one demand feature for a
given domain. This gives the total number of pages in which either of the keywords is
present.

max_score = Maximum relevance score across all the keywords in one demand feature
for a given domain.

OpenSearch is built on top of Lucene [MHGG10]. Scoring function given by OpenSearch is
the modified form of the BM25 equation 3.1 which is given by the equation 5.1.

score(d, p) = queryNorm(d)
∗ coord(d, p)

∗
N∑
i

(Tf(ti, p) ∗ IDF (ti)2 ∗ ti.getBoost())

∗ norm(ti, p)) ∗ (ti, d)

(5.1)

where score(d, p) is the relevance score of supplier webpage p for the keywords of the
demand d, queryNorm(d) is the square root of sum of squares of IDF of each key-
word in the demand keywords, coord(d, p) is the count of number of keywords from de-
mand keywords d that appear in the supplier webpage p, ti.getBoost() and norm(ti, p)
are used in terms of muti-field. However, in our case, only the description field is
queried. The Tf − IDF can be referred from the equation 3.1 The highest score given
by any of the supplier’s web pages is then considered to be the max_score of that sup-
plier.

Revisiting the example demand of "Vacuum Cleaners", the feature generation for the

41

product - Vacuum cleaner, dusting equipment field using token-based and phrase-
based feature generation for the domain abc.com is shown below.

The token-based feature generation approach is implemented by querying the OpenSearch
with a query that semantically looks like Vacuum OR cleaner OR dusting OR equipment
and programmatically looks as follows.

{ ' query ' :
{ ' bool ' :

{ ' should ' : [
{ ' bool ' : { ' must ' : [
{ ' match ' : { ' domain ' : { ' query ' : ' abc . com ' } } } ,
{ ' match ' : { ' description ' : { ' query ' : ' Vacuum ' } } }] } } ,
{ ' bool ' : { ' must ' : [
{ ' match ' : { ' domain ' : { ' query ' : ' abc . com ' } } } ,
{ ' match ' : { ' description ' : { ' query ' : ' cleaner ' } } }] } } ,
{ ' bool ' : { ' must ' : [
{ ' match ' : { ' domain ' : { ' query ' : ' abc . com ' } } } ,
{ ' match ' : { ' description ' : { ' query ' : ' dusting ' } } }] } } ,
{ ' bool ' : { ' must ' : [
{ ' match ' : { ' domain ' : { ' query ' : ' abc . com ' } } } ,
{ ' match ' : { ' description ' : { ' query ' : ' equipment ' } } }] } }
]

}
}

}

OpenSearch will give the score for all webpages indexed for the domain abc.com and
the feature demand_product_keywords_max_score will denote the highest score ob-
tained by either webpages for the domain abc.com. In addition, the number of web
pages in which either of the keywords occurs will also be given, which will denote the
demand_product_keywords_total_hits.

The phrase-based approach of feature generation is implemented by querying the OpenSearch
with a query that semantically looks like Vacuum cleaner OR dusting equipment and
programmatically looks as follows

{ ' query ' :
{ ' bool ' :

{ ' should ' : [
{ ' bool ' : { ' must ' : [
{ ' match ' : { ' domain ' : { ' query ' : ' abc . com ' } } } ,
{ ' match_phrase ' : { ' description ' : { ' query ' : ' Vacuum cleaner ' } } }] } } ,
{ ' bool ' : { ' must ' : [
{ ' match ' : { ' domain ' : { ' query ' : ' abc . com ' } } } ,
{ ' match_phrase ' : { ' description ' : { ' query ' : ' dusting equipment←↩

' } } }] } }
]

}
}

}

The feature demand_product_keywords_max_score_phrase for the domain abc.com is
denoted by the highest score obtained by either webpages. In addition, the feature de-
mand_product_keywords_total_hits_phrase is the the number of web pages containing
either of the keywords.

Both the feature generation methods are implemented for all the other demand features
mentioned in the graphical representation of a demand represented in the Fig. 5.1. Each
demand has ten characteristics; hence in total, 40 features are generated (10*(1+1 from

42

token based)*(1+1 from phrase based)). All the features are then normalized using min-
max scaling. The distribution of features before and after normalization is shown in
Fig. 5.8

(a) Before Normalisation (b) After normalisation

Figure 5.8: Features distribution. From (a), it can be seen that the feature values are
widespread from 0 to 10000, and after normalization, it can be seen from
(b) that all the feature values have a range between 0 and 1

Analysis of OpenSearch generated data

The two-sample Kolmogorov-Smirnov test for each feature in the train, validation, and test
set gave the outcome that rejected all the features denoting they don’t follow the same un-
derlying distribution. This can be due to the heavy sparsity of the data.

Apart from the class imbalance problem mentioned above, in Fig. 5.9, it can be seen that
most of the handcrafted features are sparse. Sparsity for a feature f is calculated as
follows:

sparsity(f) = count of values = 0 in f

count of values = 0 in f + count of values ̸= 0 in f
(5.2)

Figure 5.9: Data Sparsity representation. Out of 40 features, 14 features have more than
80% of feature_value as 0.

Table ?? compares the sparsity of features generated using the token-based approach and
features generated using phrase based approach. This table validates the fact that, for
example, it’s easier to get a hit from a webpage for ’Vacuum’ OR ’cleaner’ rather than
for ’Vacuum cleaner’.

43

demand feature token based
feature generation

phrase based
feature generation

product 0.15 0.6
company_type 0.38 0.44
score_keyword 0.17 0.47
manufacturing_processes_high_impact 0.93 0.95
manufacturing_processes_low_impact 0.78 0.87
certificate_high_impact 0.91 0.95
certificate_low_impact 0.83 0.88
country 0.12 0.20
application_area 0.40 0.61
search_phrases 0.03 0.43

Table 5.1: Sparsity of features generated using token-based approach and phrase-based
approach. Features generated using the phrase-based approach are compara-
tively more sparse.

5.2 Experimental Setup

All the experiments are performed using Databricks, which provides a plugin for mlflow,
making it easier to track all the experiments, from hyperparameter tuning to registering
the outperforming model for further deployment. Python is used to code all the imple-
mentation of feature engineering to model deployment. The evaluation of all the models is
done using mean average precision (mAP) and Precision@k.

5.2.1 Experiments with the handcrafted features

The demand_supplier_raw data was transformed into numerical representation using 79
handcrafted features A.. Pre-trained BERT [DCLT16] was used to embed all the text
data of demand features and the landing page of the respective supplier’s website. Cosine
similarity between the embedded demand features and the embedded supplier’s landing
page is used to generate the 79 handcrafted features.

The base model XGBoostClassifier with 79 features gave an mAP of 0.45 on
the test set.

However, after a certain period, the performance given by the model became stagnant.
This called for an investigation of the features and the modification of the model. The
workflow implemented to resolve this request is shown in Fig. 5.10 and explained below.
This is followed by the results and discussions of the experiments.

Pipeline

The data consisted of 352 unique demands with an average of 600 suppliers associated with
each one of them. It consisted of 79 handcrafted features. As there were 79 features, a
correlation check was done on the features, and one feature from a pair of highly correlated
features was taken, which gave a final set of 60 uncorrelated features. The features used to

44

Figure 5.10: Pipeline for experiments with the handcrafted features. Correlated features
from the data with 79 features were removed to form the dataset with 60
features. Twenty-five features were selected using feature selection meth-
ods. This data with 25 features was split into train, validation, and test set
on which preprocessing was done, followed by training the ranking models
using training and validation data and evaluating them on the test set and
concluded by providing the highly impacting features for each model. This
workflow combines feature selection with the three LTR approaches.

build various LTR models were selected using the feature selection approaches explained in
Section 4.2. These feature selection approaches were applied to select 25 features, forming
demand_supplier_data with selected features. The demand_supplier_data with selected
features was then date-wise divided into train, validation, and test set. The mutually
exclusive train, validation, and test data were preprocessed by applying min-max scaling
and filling all the empty values with 0.

The training data and validation data were then used to train the ranking models one
by one. The models used in this workflow were traditional ML based pointwise LTR
approach implemented using XGBoost, Deep learning based pairwise, and listwise ap-
proaches using the library tensorflow-ranking. The experimented ranking models were
evaluated on the test data using mAP. Benchmarking, explained in Section 4.4 was done
and SHAP plots were used to gain insights from the features that impacted the best
performing model.

45

Results

Table 5.2 gave the mAP scores obtained by the XGBoostClassifier with the three feature
selection method. The highest mAP was given by the XGBoostClassier, which did not use
feature selection and considered all the 60 features(79-highly correlated features). As the
feature selection methods did not give the expected results, the next set of experiments
was performed using deep learning based pairwise and listwise approaches with all the 60
features, shown in Table 5.3. However, neither of the deep learning based LTR approaches
outperformed the champion model from Table 5.2.

Feature selection mAP
All features (no feature selection) 0.46
Filter Method GAS algorithm 0.39
Clustering based 0.43
Wrapper method 0.42

Table 5.2: Evaluation of traditional ML based Pointwise LTR using XGBoostClassifier
with different feature selection methods.

Approach Loss function mAP

Deep learning based pairwise LTR
pairwise_logistic_loss 0.40
pairwise_hinge_loss 0.40
pairwise_soft_zero_one_loss 0.41

Deep learning based listwise LTR softmax_loss 0.40

Table 5.3: Evaluation of Deep learning based Pairwise and Listwise LTR approaches.

Figure 5.11: Feature importance plot of the top performing model, i.e., traditional ML
based pointwise - XGBoostClassifier

Hence, it can be stated that the XGBoost model without any feature selection outper-
formed the three XGBoost models with their respective feature selection methods and
Deep learning based pairwise and listwise models.

46

The champion model was further investigated using SHAP plots. Going from model-
driven machine learning to product-oriented machine learning is the need of the hour.
Hence, all the investigations were done by keeping the domain experts, who are also the
end-users, in the loop. When the SHAP plots were discussed with the domain experts,
the overall feedback was that, firstly, most of the features weren’t self-explanatory, and
secondly, most of them were redundant. Moreover, the entire pipeline was complicated,
and in production, it took two hours per demand. There was a demand for a model with
self-explanatory features from the domain experts. Hence, it was considered a sunk cost
instead of circling back to improvising the model.

RQ2 hypothesized that the explainability of the ranking model could be leveraged to
obtain better insights. The previous investigations played a major role in selecting the
features for the new approach to building the ranking model. The domain experts sug-
gested that they would like to have features like the features in the SHAP plots Fig. 5.11
with a suffix ’_match_ratio’. These features gave the ratio of the keywords from a partic-
ular demand feature matched in the supplier’s landing page. This led to the feature gen-
eration using OpenSearch. This positively answers RQ2 as the insights gained
from the explainability module of the ranking approach helped to build a
simpler approach.

5.2.2 Intermediate experiments with features generated using
OpenSearch

The discussions from the experiments as mentioned earlier and results led to the fol-
lowing workflow shown in Fig. 5.12 to solve the ranking problem. This approach was
based on Occam’s razor principle. With this approach, a ranking pipeline not only has
far fewer features than the previously mentioned model but also self-explanatory fea-
tures.

Pipeline

The demand_supplier_raw_data raw data 5.1.1 consisted of 10 demand characteristics 5.1
along with their associated domains. The token-based approach, explained in the sub-
section 5.1.2 where each keyword is split on whitespace and sent as an OR query to
AWS_OpenSearch was then used to get the total_hits and max_score for each of the
demand characteristics of the raw data. The domains of the suppliers are indexed and
stored in the OpenSearch with a page depth of 100.

The token-based approach converted the demand_supplier raw data into data that con-
sisted of 20 features (for each demand characteristic, two features were obtained total_hits
and max_score; therefore 2*10) which formed the final demand_supplier_data to con-
duct the experiments on. This data was then split into train, validation, and test set
based on their creation date and further preprocessed by filling the empty values with
0. Traditional machine learning based pointwise ranking model using a random forest
classifier was trained using the preprocessed train data, and the hyperparameter tun-
ing was done and validated on the validation data. The trained random forest classifier

47

Figure 5.12: Pipeline for experiments with token-based feature generation using
OpenSearch. The raw data is transformed into numerical representations.
This transformed data is split into train, validation, and test set. The
preprocessed train and validation data are used for training the random
forest classifier. The trained classifier is evaluated using the preprocessed
test data and benchmark demands.

was then evaluated using the preprocessed test set and human-evaluated using the five
benchmarking demands mentioned in 4.4.

Results

mAP of the random forest classifier on the test set was 0.43. However, as men-
tioned previously, the test set only consists of approx. 600 suppliers per demand, unlike the
real world setting where approx. 5000 suppliers are to be ranked. Hence benchmarking is
done with the help of domain experts, which is shown in Table 5.4.

Even though on the test set, the previous workflow had a higher mAP score of 0.46 com-
pared to the intermediate workflow with the mAP score of 0.43, in the human evaluation,
the intermediate workflow outperformed in all except one demand. However, compared
to the overall spread of Prec@100 for the previous workflow, the overall spread of Prec@100
for the intermediate workflow is uniform, as shown in Fig. 5.13.

48

demand_id P@100(Previous Workflow) P@100(Intermediate Workflow)
783 0.31 0.38
1928 0.17 0.42
1651 0.28 0.29
1976 0.32 0.32
1817 0.38 0.32
overall 0.30 0.35

Table 5.4: Performance of the winning XGBoostClassifier from the previous workflow
and the random forest classifier from this intermediate workflow.

Figure 5.13: Uniformity in the performance of Precision@100 for the champion XG-
BoostClassifier from the experiments with handcrafted features and
the random forest classifier from the intermediate experiments with
OpenSearch generated features on the five benchmark demands.

One of the goals of this thesis is to build a product-driven solution. RQ1 aimed at
validating Occam’s razor, and based on the results, it can be concluded that
a simpler ranking model with just 20 features is better than the complicated
winning ranking model from the previous experiments with 60 features. Even
though the performance was better and the features were self-explanatory, the domain
experts, who are also the end-users, were skeptical of the token-based approach for fea-
ture generation. They proposed a requirement for an exact match, i.e., the phrase-based
method for feature generation.

5.2.3 Final experiments with features generated using OpenSearch

Based on the previous discusions, features generated by considering the keywords be-
longing to each demand feature as a whole without any split was needed. This can be
done using the phrase based approach of feature generation using OpenSearch. However,
having features generated using only the phrase-based approach made the overall dataset
sparse Fig. 5.14.

In Fig. 5.14a, it can be seen that out of the 20 generated features, 8 features have sparsity >

49

(a) Sparsity of token-based generated features (b) Sparsity of phrase-based generated features

Figure 5.14: Features distribution

0.5 whereas in Fig. 5.14b, out of the 20 generated features, 12 features have sparsity > 0.5.
This led to the following pipeline shown in Fig. 5.15 that combined both the token-based
feature generation and the phrase-based feature generation.

Pipeline

The demand_supplier_raw_data as explained previously, consisted of demand character-
istics along with their associated domains. The token-based approach for feature genera-
tion was used to get the total_hits and max_score for each of the demand characteristics.
Unlike the previous experiments with OpenSearch, the phrase-based approach was also
used to generate the features total_hits_phrase and max_score_phrase for each of the
demand characteristics. Similar to the previous experiments with OpenSearch generated
features, the domains of the suppliers are indexed and stored in the opensearch with a page
depth of 100. The token based approach converted the demand_supplier raw data into
demand_supplier_token_data that consisted of 20 features. The phrase based approach
converted the demand_supplier raw data into the demand_supplier_phrase_data with
20 features. The demand_supplier_token_data and the demand_supplier_phrase_data
were combined to form the demand_supplier_data which consisted of 40 features.

This demand_supplier_data was split into train, validation and test set and further
preprocessed by applying the preprocessing steps as shown in the Fig. 5.16 forming the
pre-processed train data, pre-processed validation data and pre-processed test data. Tra-
ditional machine learning based pointwise ranking model using random forest classifier,
traditional machine learning based pairwise ranking model using XGBoost, deep learn-
ing based point wise ranking model, deep learning based pairwise ranking model and
deep learning based list wise ranking models were experimented in combination with var-
ious sampling techniques. For random forest, no sampling with class weight parameter
as balanced, undersampled train data and oversampled train data were used. For XG-
Boost pairwise, no sampling, undersampled train data and oversampled train data were
used. For Neural Network based pointwise, pairwise and list wise with undersampling
and padding technique were used. In combination 12 different ranking approaches were
trained using the various sampled train data and hyperparamter tuning was validated
using the pre-processed validation set. One trained ranking model with the best hyper-
paramter setting from each of the ’sampling techniques - LTR approach’ combination was
further evaluated on the test set and also evaluated by the domain experts using the 5
benchmarking demands.

50

Figure 5.15: Pipeline for experiments with token-based and phrase-based feature gen-
eration using OpenSearch. The raw data is transformed numerical repre-
sentations. This transformed data is split into train, validation and test
set. Preprocessed and sampled train and pre-processed validation data are
used to train the ranking models and evaluated using test data and bench-
mark data. Feature importance plots using SHAP are plotted for the best
performing ranking models to gain insights.

Results

Table ?? provide the experimentation results of traditional machine learning based point
wise and pairwise approach which were trained using various sampling techniques no
sampling, under sampling and oversampling and the results of deep learning based LTR
approaches which were trained using under sampling and padding. All the traditional
machine learning based ranking models provide >0.5 precision@10 and comparatively
perform better than that of deep learning based learning to rank models. However,
according to the precision@100 the deep learning based models pairwise and listwise and
the traditional machine learning based ranking models provide more or less the same
performance.

Another interesting finding is that all the deep learning based ranking models have a
lower mAP@10 compared to their respective overall mAP. With respect to the sam-
pling techniques, for all the approaches, there isn’t any significant difference between
the performance of the models when any sampling technique is applied. The least per-
forming model is the deep learning based pointwise approach. Based on previous ex-
planations, considering the reliability of the results on the test and validation set with
a warning, a human-based evaluation is conducted which is explained in detail as fol-

51

Figure 5.16: Pre-processing steps of train, validation, test, and benchmark data

lows.

In Table 5.5, the performance of various ranking approaches on domain expert evaluated
demand_ids is tabulated. The most important observation is that the prec@100 for
all the models is less than what was observed on the test set and the most peculiar one
being the traditional machine learning based pairwise approach which has shown the most
drastic decline in the performance. Reminding that the benchmark demands were from
October-2022 and November-2022 and the training, validation and test data consisted of
the demands only till April-2022, these results suggests that there might be a data drift
which is causing this behaviour. Deep learning based listwise approach with padding of the
training data gave the highest overall precision@100 of 0.414, followed by the traditional
machine learning based pointwise approach with under-sampled data with a precision@100

Approach Model mAP@10 mAP@100 mAP P@10 P@100

Traditional
Machine Learning

pointwise no sampling 0.53 0.33 0.44 0.65 0.44
pointwise undersampling 0.54 0.34 0.45 0.64 0.44
pointwise oversampling 0.55 0.35 0.45 0.66 0.46
pairwise no sampling 0.5 0.32 0.43 0.62 0.42
pairwise undersampling 0.56 0.35 0.45 0.68 0.46
pairwise oversampling 0.55 0.35 0.46 0.66 0.47

Deep learning

pointwise padding 0.35 0.24 0.38 0.47 0.38
pointwise undersampling 0.31 0.28 0.42 0.49 0.42
pairwise padding 0.38 0.35 0.45 0.56 0.48
pairwise undersampling 0.38 0.35 0.45 0.57 0.48
listwise padding 0.37 0.35 0.46 0.57 0.48
listwise undersampling 0.40 0.35 0.45 0.58 0.47

52

Approach models/demands 783 1928 1651 1976 1817 overall

Traditional
Machine learning

Pointwise no sampling 0.38 0.26 0.46 0.47 0.37 0.388
Pointwise undersampling 0.44 0.39 0.39 0.44 0.30 0.392
Pointwise oversampling 0.42 0.22 0.48 0.48 0.33 0.386
Pairwise no sampling 0.22 0.09 0.16 0.12 0.06 0.13
Pairwise under sampling 0.42 0.09 0.28 0.25 0.24 0.256
Pairwise over sampling 0.42 0.07 0.39 0.34 0.23 0.29

Deep Learning

Pointwise undersampling 0.36 0.13 0.26 0.35 0.22 0.264
Pointwise padding 0.37 0.17 0.21 0.60 0.29 0.328
Pairwise under sampling 0.40 0.43 0.23 0.56 0.27 0.378
Pairwise padding 0.46 0.42 0.23 0.53 0.22 0.372
Listwise undersampling 0.42 0.41 0.21 0.50 0.34 0.376
Listwise padding 0.45 0.53 0.21 0.62 0.26 0.414

Table 5.5: benchamrked demands pre@100

of 0.392 and the traditional machine learning based pointwise approach with the balanced
class weight with a precision@100 of 0.388. However, it is worth noting that out of the
five demands, even though deep learning based list wise approach with a padded training
dataset gave precision@100 > 0.5 for two demands also gave precision@100 < 0.3 for two
other demands, of which one was pretty well handled by tradition machine learning based
pointwise approach with oversampling that gave a precision@100 of 0.48 for the very same
demand. This finding raises another question: whether a powerful ranking approach like
list wise cannot generalize well over all kinds of demand-supplier data. Another interesting
observation is that for the two demands where the winning approach’s performance was
low, the second runner-up model traditional machine learning pointwise approach with
class weight balanced and no sampling performed exceptionally well and vice versa. RQ3
questioned whether one ranking model is sufficient to handle the diverse set of demand-
supplier sets. These experiments answer the RQ3 that one ranking model cannot give a
consistent performance across the demands.

Based on the performance of the twelve models on the test set and on the benchmarking
demands, the top four winning ranking models in order are

1. Deep learning based listwise approach with padded train data.

2. Traditional Machine Learning based pointwise approach with undersampled train
data

3. Traditional Machine Learning based pointwise approach with oversampled train
data

4. Traditional Machine Learning based pointwise approach with class weight parameter
set to balanced

The SHAP plots for these four models on the test set and also on individual benchmark
demands are plotted which are shown in the Appendix section to reveal further insights
of each of the models and to declare the champion model.

53

5.3 User Study

A user study was conducted where the domain experts were asked to rank the features as
per their importance for considering a particular supplier to be relevant or irrelevant with
respect to a particular demand. The consolidated features importance have been shown
in the Table 5.6.

Elaborating it further, each domain expert had worked on atleast one demand from the
benchmark set. The domain experts were asked to rank the demand characteristics, given
in Section 5.1.1 that were considered by them while marking the suppliers as relevant
or irrelevant during the benchmarking. These characteristics are given as different data
fields. This is represented under the column ’domain experts’ in the Table 5.6. Each of
the SHAP plots that gave the feature importance for each demand in the benchmark
set by each of the above mentioned four winning models is also represented with the
column demand_id’s being tabulated vertically and and the models being tabulated hor-
izontally.

There are 40 features in the data, however, the demand characteristics are 10 and using
token-based approach and phrase-based approach total_hits and max_scores for each of
the features was calculated resulting in 10*4=40 features. While consolidating the feature
importances, all the features were mapped back to their original demand characteristics.
Each cell value represents the ordered set of the demand characteristics (top 5), with the
first mentioned one being the most important characteristic for the respective model and
the respective demand from the benchmark set.

5.3.1 Observations

1. All the domain experts ranked the data field product to be the most important
demand characteristic. It can be seen that traditional ML pointwise oversam-
pling model correctly considered product to be the most impacting feature. Also,
deep learning based listwise approach with padding as the sampling technique, had
product as the most important feature for the two of the demands 1976 and 1817.
However, it is worth noting that product is considered important by all the models
if not at rank one but at a lower rank.

2. Four out of five domain experts considered company_type as the second most im-
portant feature. deep learning based listwise approach with padding as the sampling
technique has company_type in all of its demand characteristic set. All the other
three models have company_type in their top five only for one demand 1817.

3. For demand 783, the domain expert considered certificate_low_impact impor-
tant, however, none of the models had this feature in their respective sets. One
reason could be the sparsity (approximately 0.8) of this data field. All the models
correctly included application_area_high_impact and location in the impor-
tant characteristic set except deep learning based listwise padding model that did
not include location, but it did include company_type.

4. For demand 1928, apart from product, location and extra_score_keywords are
important as per the domain expert handling this demand and these two have been

54

taken into account by all the models. The characteristic
manufacturing_processes_low_impact have been considered as an impacting char-
acteristic by all the models except by the deep learning based listwise padding.

5. For demand 1651, the characteristic extra_score_keywords is another important
characteritic according to the domain expert and it correctly belongs to the char-
acteristic set of all the models. The characteritics location is considered im-
portant by all the models except deep learning based listwise padding, however,
this model rightly considered company_type which other models failed to capture.
manufacturing_processes_high_impact is another important feature as per the
domain expert and it belongs to the demand characteristic set of two models deep
learning based listwise padding and the traditional ML pointwise undersampling.

6. For demand 1976, location, manufacturing_processes_low_impact, and
application_area_high_impact have made to the list of important characteritics
of the domain expert and they are correctly noted by all the models except deep
learning based listwise padding which did not have location but had company_type.

7. For demand 1817, all the characteristics that the domain expert has considered
while marking the supplier to be relevant or irrelevant are also correctly included in
all the demand characteristic set of all the models in different models.

55

de
m

an
d_

id
Tr

ad
iti

on
al

M
L

po
in

tw
ise

no
sa

m
pl

in
g

Tr
ad

iti
on

al
M

L
po

in
tw

ise
un

de
rs

am
pl

in
g

Tr
ad

iti
on

al
M

L
po

in
tw

ise
ov

er
sa

m
pl

in
g

N
N

Li
st

w
ise

pa
dd

in
g

do
m

ai
n

ex
pe

rt
s

78
3

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

pr
od

uc
t,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

pr
od

uc
t,

lo
ca

tio
n,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{p
ro

du
ct

,
ex

tr
a_

sc
or

e_
ke

yw
or

ds
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{a
pp

lic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

ex
tr

a_
sc

or
e_

ke
yw

or
ds

,
co

m
pa

ny
_

ty
pe

,
pr

od
uc

t,
m

an
uf

ac
tu

rin
g_

pr
oc

es
se

s_
lo

w
_

im
pa

ct
}

{p
ro

du
ct

,
co

m
pa

ny
_

ty
pe

,
ce

rt
ifi

ca
te

_
lo

w
_

im
pa

ct
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n}

19
28

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

pr
od

uc
t,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

,
lo

ca
tio

n}

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

pr
od

uc
t,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{p
ro

du
ct

,
ex

tr
a_

sc
or

e_
ke

yw
or

ds
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

co
m

pa
ny

_
ty

pe
,

pr
od

uc
t,

lo
ca

tio
n

}

{p
ro

du
ct

,
lo

ca
tio

n,
ce

rt
ifi

ca
te

_
lo

w
_

im
pa

ct
,

ex
tr

a_
sc

or
e_

ke
yw

or
ds

,
m

an
uf

ac
tu

rin
g_

pr
oc

es
se

s_
lo

w
_

im
pa

ct
}

16
51

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

pr
od

uc
t,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

pr
od

uc
t,

lo
ca

tio
n,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

hi
gh

_
im

pa
ct

}

{p
ro

du
ct

,
ap

pl
ic

at
io

n_
ar

ea
_

hi
gh

_
im

pa
ct

,
ex

tr
a_

sc
or

e_
ke

yw
or

ds
,

lo
ca

tio
n,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

co
m

pa
ny

_
ty

pe
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

hi
gh

_
im

pa
ct

,
pr

od
uc

t}

{p
ro

du
ct

,
co

m
pa

ny
_

ty
pe

,
lo

ca
tio

n,
ex

tr
a_

sc
or

e_
ke

yw
or

ds
,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

hi
gh

_
im

pa
ct

}

19
76

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

pr
od

uc
t,

lo
ca

tio
n,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

pr
od

uc
t,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{p
ro

du
ct

,
ex

tr
a_

sc
or

e_
ke

yw
or

ds
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

}

{p
ro

du
ct

,
ex

tr
a_

sc
or

e_
ke

yw
or

ds
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

m
an

uf
ac

tu
rin

g_
pr

oc
es

se
s_

lo
w

_
im

pa
ct

,
co

m
pa

ny
_

ty
pe

}

{p
ro

du
ct

,
co

m
pa

ny
_

ty
pe

,
lo

ca
tio

n,
m

an
uf

ac
tu

rin
g_

pr
oc

es
se

s_
lo

w
_

im
pa

ct
ap

pl
ic

at
io

n_
ar

ea
_

hi
gh

_
im

pa
ct

}

18
17

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

pr
od

uc
t,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n,

co
m

pa
ny

_
ty

pe
}

{e
xt

ra
_

sc
or

e_
ke

yw
or

ds
,

pr
od

uc
t,

lo
ca

tio
n,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

co
m

pa
ny

_
ty

pe
}

{p
ro

du
ct

,
ap

pl
ic

at
io

n_
ar

ea
_

hi
gh

_
im

pa
ct

,
lo

ca
tio

n,
ex

tr
a_

sc
or

e_
ke

yw
or

ds
,

co
m

pa
ny

_
ty

pe
}

{p
ro

du
ct

,
ex

tr
a_

sc
or

e_
ke

yw
or

ds
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

co
m

pa
ny

_
ty

pe
,

lo
ca

tio
n

}

{p
ro

du
ct

,
co

m
pa

ny
_

ty
pe

,
ex

tr
a_

sc
or

e_
ke

yw
or

ds
,

ap
pl

ic
at

io
n_

ar
ea

_
hi

gh
_

im
pa

ct
,

lo
ca

tio
n}

T
ab

le
5.

6:
D

em
an

d
ch

ar
ac

te
ris

tic
s

im
po

rt
an

ce
as

pe
r

th
e

do
m

ai
n

ex
pe

rt
s

an
d

th
e

to
p

4
w

in
ni

ng
m

od
el

s.

56

6 Discussion

Fig. 6.1 plots the performance of the four winning models based on the Table 5.5. It is
interesting to see that all the pointwise approaches using traditional machine learning,
which are basically classification models made to the list of top 4. This can be due
to the binary ground truth. It can be seen that Traditional ML pointwise undersam-
pling performs the most uniformly across all the demands in the benchmark dataset.

Figure 6.1: Performance of winning model based on Table 5.5

For the demand 783, based on the user study no clear conclusions can be made as all
the important demand characteristics as per the domain experts are spread across the
models. Hence, based on the P@100 deep learning based listwise padding and tradi-
tional ML pointwise undersampling with values 0.46 and 0.45 can be considered win-
ners.

For the demand 1928, based on the user study, deep learning based listwise padding is
excluded as the characteristics it considered to be most impacting are different than the
characteristics considered important by the domain expert. The characteristic location
should be before manufacturing_processes_low_impact which is very well captured
by tradtional ML pointwise undersampling and traditional ML pointwise oversampling.
And based on P@100 traditional ML pointwise undersampling is better for this demand
as it has the score of 0.39 compared to the score of 0.22 by traditional ML pointwise
oversampling.

For the demand 1651, based on the observations from the user study, the demand charac-
teristics sets of traditional ML pointwise undersampling and deep learning based listwise

57

padding show a close resemblance to the demand characteristics set given by the domain
expert. And based on P@100 score, traditional ML pointwise undersampling show a bet-
ter performance with a score of 0.39 that deep learning based listwise padding with a
score of 0.21

For the demand 1976, based on the user study, traditional ML pointwise no sampling
model can be excluded as it ranks the characteristic product way lower. And for the re-
maining three models, based on the P100, deep learning based listwise padding gives the
highest score of 0.62, followed by a score of 0.48 by traditional ML pointwise oversampling
and a score of 0.44 by tradtitional ML pointwise undersampling.

For the demand 1817, no conclusive remarks can be drawn from the user study as all the
models have all the important demand characteristics as required by the domain expert.
Based on the P@100 score, traditional ML pointwise no sampling gives a score of 0.37, fol-
lowed by 0.33 by tradtional ML pointwise oversampling, 0.30 by traditional ML pointwise
undersampling and 0.26 by deep learning based listwise padding.

Figure 6.2: P@100 score on the test set of the models

Further the analysis of the performance of the four models on the test set is done. A
box plot representing the P@100 score of all the models is shown in the Fig. 6.2. Com-
paratively, the deep learning based listwise padding had a more uniform performance
across all the demands in the test set, followed by traditional ML pointwise undersam-
pling.

Upon further investigation of the test set it was observed that 11 out of 32 demands
had less than 100 relevant suppliers so a modified Precision score was calculated such
that for the demands with less than 100 relevant suppliers, the precision score was the
number of relevant suppliers in top 100 as given by the model in proportion to the
total number of relevant suppliers instead of 100. This is shown in the equation be-
low.

Modified P@k = {number of relevant suppliers till position k}
min(k,total number of relevant suppliers associated with the demand)

58

Figure 6.3: Modified Precision score the test set of the models

Another way would be to completely exclude the 11 demands as in the real world setting, it
is mostly expected to find at least 100 relevant suppliers. After evaluating the performance
of the models based on this modified score a box plot of this modified score is shown in
the Fig. 6.3 and the box plot of the demands with greater than 99 relevant suppliers is
shown in the Fig. 6.4.

However, the conclusions that can be drawn from these two figures are the same as the
ones with the original P@100 score where deep learning based listwise padding model
showed a uniformly spread performance followed by traditional ML pointwise undersam-
pling. Considering the discussions above, it can be said that traditional ML pointwise

Figure 6.4: P@100 score on the test set of the models where test set only consisted of
the demands with greater than 99 relevant suppliers

59

undersampling is the champion model as it has shown a decent performance in the user
study as well on the benchmark and the test set.

60

7 Conclusion and Future Work

Each demand is different and hence the most important thing that needs to be done is to
analyse the demands and group them based on their similarity. There were some demands
where some of the models gave near to perfect performance. If the demands are grouped
then for each group of demands a model could be assigned.

Another important thing would be try out an ensemble of the models as it can be seen
from the Table 5.5 that the performance of some of the models is complementary to each
other. A quick check with various loss functions for the Deep learning based ranking
models and XGBoost for Traditional ML based pointwise approach can be done. All the
demands that were used for training belong to April-2021, retraining the models with new
demands may prove beneficial.

Each domain expert had a different set of important demand characteristics, hence models
with various combinations of demand characteristics/features could be trained and as
per the demand characteristics importance given by the end user/domain expert, the
respective model could be chosen for ranking.

The way features are generated is based on naive match of the tokens or the entire
keyword on the respective websites. However, this could also add some noise to the
generated features. Let’s consider the example where the demand is looking for suppliers
in Germany. It is possible that the supplier is serving another product in Germany and not
the one that the demand is looking for and the word Germany is present in that context.
One solution would be to apply Named Entity Recognition (NER) [NS07]. When it comes
to the ground truth, instead of having binary labels, it would be interesting to see the
performance of various LTR approaches on the demand-supplier data where the suppliers
have a relevancy score.

There are also quite a few advancements in the LTR approaches [ZWB+20] which could
be tried to solve the problem statement of ranking suppliers based on the demand.

61

Appendices

A. 79 handcrafted features

demand_score_keywords_score_mean

demand_score_keywords_score_mean_50_sim

demand_score_keywords_score_mean_10_sim

demand_score_keywords_score_mean_50_dissim

demand_score_keywords_score_mean_10_dissim

demand_search_keywords_score_mean

demand_search_keywords_score_mean_50_sim

demand_search_keywords_score_mean_10_sim

demand_search_keywords_score_mean_50_dissim

demand_search_keywords_score_mean_10_dissim

demand_product_keywords_score_mean

demand_product_keywords_score_mean_50_sim

demand_product_keywords_score_mean_10_sim

demand_product_keywords_score_mean_50_dissim

demand_product_keywords_score_mean_10_dissim

demand_application_areas_high_impact_score_mean

demand_application_areas_high_impact_score_mean_50_sim

demand_application_areas_high_impact_score_mean_10_sim

demand_application_areas_high_impact_score_mean_50_dissim

demand_application_areas_high_impact_score_mean_10_dissim

demand_extra_score_keywords_score_mean

demand_extra_score_keywords_score_mean_50_sim

demand_extra_score_keywords_score_mean_10_sim

demand_extra_score_keywords_score_mean_50_dissim

demand_extra_score_keywords_score_mean_10_dissim

62

demand_manufacturing_processes_high_impact_score_mean

demand_manufacturing_processes_high_impact_score_mean_50_sim

demand_manufacturing_processes_high_impact_score_mean_10_sim

demand_manufacturing_processes_high_impact_score_mean_50_dissim

demand_manufacturing_processes_high_impact_score_mean_10_dissim

demand_manufacturing_processes_low_impact_score_mean

demand_manufacturing_processes_low_impact_score_mean_50_sim

demand_manufacturing_processes_low_impact_score_mean_10_sim

demand_manufacturing_processes_low_impact_score_mean_50_dissim

demand_manufacturing_processes_low_impact_score_mean_10_dissim

demand_business_areas_score_mean

demand_business_areas_score_mean_50_sim

demand_business_areas_score_mean_10_sim

demand_business_areas_score_mean_50_dissim

demand_business_areas_score_mean_10_dissim

demand_application_areas_score_mean

demand_application_areas_score_mean_50_sim

demand_application_areas_score_mean_10_sim

demand_application_areas_score_mean_50_dissim

demand_application_areas_score_mean_10_dissim

is_google_homepage_hit

reachable_for_downloader

candidate_data_findings_len

candidate_data_discovery_findings_len

candidate_data_emis_score

candidate_data_static_score

serpstat_alpha

serpstat_beta

matched_candidate_score_keywords_len

matched_certificates_high_impact

matched_certificates_low_impact

purchaser_names_match_mean

63

typical_customers_match_ratio

product_keywords_match_ratio

score_keywords_match_ratio

search_keywords_match_ratio

extra_score_keywords_match_ratio

manufacturing_processes_match_ratio_high_impact

application_areas_match_ratio_high_impact

demand_business_areas_similarity_weight_1

demand_business_areas_similarity_weight_2

demand_business_areas_similarity_weight_3

demand_business_areas_similarity_weight_4

demand_business_areas_similarity_weight_5

demand_business_areas_similarity_weight_6

demand_business_areas_similarity_weight_7

demand_business_areas_similarity_weight_8

demand_business_areas_similarity_weight_9

demand_business_areas_similarity_weight_10

business_areas_total_score

application_areas_total_score

products_total_score

candidate_data_findings_page_number

candidate_company_type_include_ratio

64

Bibliography

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. URL: https://www.tensorflow.org/.

[AB18] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a
survey on explainable artificial intelligence (xai). IEEE access, 6:52138–
52160, 2018.

[ADRDS+20] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-
López, Daniel Molina, Richard Benjamins, et al. Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges to-
ward responsible ai. Information fusion, 58:82–115, 2020.

[Aga05] Shivani Agarwal. A study of the bipartite ranking problem in machine learn-
ing. University of Illinois at Urbana-Champaign, 2005.

[AMJ18] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretabil-
ity with self-explaining neural networks. Advances in neural information
processing systems, 31, 2018.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[Bur10] Christopher JC Burges. From ranknet to lambdarank to lambdamart: An
overview. Learning, 11(23-581):81, 2010.

[BYRN+99] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information
retrieval, volume 463. ACM press New York, 1999.

[CDS18] J Shane Culpepper, Fernando Diaz, and Mark D Smucker. Report from
the third strategic workshop on information retrieval (swirl).(2018). 2018.

[CHB+15] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang,
Hyunsu Cho, Kailong Chen, et al. Xgboost: extreme gradient boosting. R
package version 0.4-2, 1(4):1–4, 2015.

65

https://www.tensorflow.org/

[CHH+17] Heng-Tze Cheng, Zakaria Haque, Lichan Hong, Mustafa Ispir, Clemens
Mewald, Illia Polosukhin, Georgios Roumpos, D Sculley, Jamie Smith,
David Soergel, et al. Tensorflow estimators: Managing simplicity vs. flexi-
bility in high-level machine learning frameworks. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1763–1771, 2017.

[CQL+07] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the
24th international conference on Machine learning, pages 129–136, 2007.

[CZH+12] Fuxing Cheng, Xin Zhang, Ben He, Tiejian Luo, and Wenjie Wang. A
survey of learning to rank for real-time twitter search. In Joint International
Conference on Pervasive Computing and the Networked World, pages 150–
164. Springer, 2012.

[DCLT16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Bidirectional encoder representations from transformers. 2016.

[DDF+90] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis. Jour-
nal of the American society for information science, 41(6):391–407, 1990.

[DLH19] Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable ma-
chine learning. Communications of the ACM, 63(1):68–77, 2019.

[FM08] Peter Flach and Edson Matsubara. On classification, ranking, and probabil-
ity estimation. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum fr Informatik, 2008.

[GA19] David Gunning and David Aha. Darpa’s explainable artificial intelligence
(xai) program. AI magazine, 40(2):44–58, 2019.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[GDR16] Artem Grotov and Maarten De Rijke. Online learning to rank for informa-
tion retrieval: Sigir 2016 tutorial. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information Re-
trieval, pages 1215–1218, 2016.

[GMR+18] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. A survey of methods for explain-
ing black box models. ACM computing surveys (CSUR), 51(5):1–42, 2018.

[HBLH94] William Hersh, Chris Buckley, TJ Leone, and David Hickam. Ohsumed: An
interactive retrieval evaluation and new large test collection for research.
In SIGIR’94, pages 192–201. Springer, 1994.

[Hey97] Francis Heylighen. Occam’s razor. Principia cybernetica web, 1997.

[HWZL08] Chuan He, Cong Wang, Yi-Xin Zhong, and Rui-Fan Li. A survey on learn-
ing to rank. In 2008 International Conference on Machine Learning and
Cybernetics, volume 3, pages 1734–1739. Ieee, 2008.

66

[IC14] Muhammad Ibrahim and Mark Carman. Undersampling techniques to re-
balance training data for large scale learning-to-rank. In Asia Information
Retrieval Symposium, pages 444–457. Springer, 2014.

[IC16] Muhammad Ibrahim and Mark Carman. Comparing pointwise and list-
wise objective functions for random-forest-based learning-to-rank. ACM
Transactions on Information Systems (TOIS), 34(4):1–38, 2016.

[Joa06] Thorsten Joachims. Training linear svms in linear time. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 217–226, 2006.

[KJ+13] Max Kuhn, Kjell Johnson, et al. Applied predictive modeling, volume 26.
Springer, 2013.

[KKH22] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. Machine learn-
ing operations (mlops): Overview, definition, and architecture. arXiv
preprint arXiv:2205.02302, 2022.

[KWG+18] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler,
Fernanda Viegas, et al. Interpretability beyond feature attribution: Quan-
titative testing with concept activation vectors (tcav). In International
conference on machine learning, pages 2668–2677. PMLR, 2018.

[LEC+20] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M
Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and
Su-In Lee. From local explanations to global understanding with explain-
able ai for trees. Nature machine intelligence, 2(1):56–67, 2020.

[Liu11] Tie-Yan Liu. Learning to rank for information retrieval. 2011.

[LL17] Scott M Lundberg and Su-In Lee. A unified approach to inter-
preting model predictions. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 30, pages 4765–
4774. Curran Associates, Inc., 2017. URL: http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf.

[Llo82] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

[LNV+18] Scott M Lundberg, Bala Nair, Monica S Vavilala, Mayumi Horibe,
Michael J Eisses, Trevor Adams, David E Liston, Daniel King-Wai Low,
Shu-Fang Newman, Jerry Kim, et al. Explainable machine-learning predic-
tions for the prevention of hypoxaemia during surgery. Nature biomedical
engineering, 2(10):749–760, 2018.

[MHGG10] Michael McCandless, Erik Hatcher, Otis Gospodnetić, and O Gospodnetić.
Lucene in action, volume 2. Manning Greenwich, 2010.

[Mit99] Tom M Mitchell. Machine learning and data mining. Communications of
the ACM, 42(11):30–36, 1999.

[MM97] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1.
McGraw-hill New York, 1997.

67

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

[Mol18] Christoph Molnar. others. 2018. Interpretable machine learning: A guide
for making black box models explainable. E-book at< https://christophm.
github. io/interpretable-ml-book/>, version dated, 10, 2018.

[Mon21] Robert Munro Monarch. Human-in-the-Loop Machine Learning: Active
learning and annotation for human-centered AI. Simon and Schuster, 2021.

[MRS10] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to information retrieval. Natural Language Engineering, 16(1):100–
103, 2010.

[NS07] David Nadeau and Satoshi Sekine. A survey of named entity recognition
and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[OFG+17] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen,
Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
Tensorflow-serving: Flexible, high-performance ml serving. arXiv preprint
arXiv:1712.06139, 2017.

[OGGdR+21] Alexandra Olteanu, Jean Garcia-Gathright, Maarten de Rijke, Michael D
Ekstrand, Adam Roegiest, Aldo Lipani, Alex Beutel, Alexandra Olteanu,
Ana Lucic, Ana-Andreea Stoica, et al. Facts-ir: fairness, accountability,
confidentiality, transparency, and safety in information retrieval. In ACM
SIGIR Forum, volume 53, pages 20–43. ACM New York, NY, USA, 2021.

[P18] Aruna P. The amazon a9 algorithm. 08 2018.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[PBW+19] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li,
Michael Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan
Anil, and Stephan Wolf. Tf-ranking: Scalable tensorflow library for
learning-to-rank. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2970–2978,
2019.

[PHB+18] Alun Preece, Dan Harborne, Dave Braines, Richard Tomsett, and
Supriyo Chakraborty. Stakeholders in explainable ai. arXiv preprint
arXiv:1810.00184, 2018.

[QKF20] Nunung Nurul Qomariyah, Dimitar Kazakov, and Ahmad Fajar. Predicting
user preferences with xgboost learning to rank method. pages 123–128, 12
2020. doi:10.1109/ISRITI51436.2020.9315494.

[Rob97] Stephen E Robertson. Overview of the okapi projects. Journal of docu-
mentation, 1997.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.

68

https://doi.org/10.1109/ISRITI51436.2020.9315494

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i
trust you?" explaining the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1135–1144, 2016.

[SHG+15] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo,
and Dan Dennison. Hidden technical debt in machine learning systems.
Advances in neural information processing systems, 28, 2015.

[SK18] Mehrnoush Barani Shirzad and Mohammad Reza Keyvanpour. A system-
atic study of feature selection methods for learning to rank algorithms.
International Journal of Information Retrieval Research (IJIRR), 8(3):46–
67, 2018.

[SPM19] Amal Saadallah, Florian Priebe, and Katharina Morik. A drift-based dy-
namic ensemble members selection using clustering for time series fore-
casting. In Joint European conference on machine learning and knowledge
discovery in databases, pages 678–694. Springer, 2019.

[SWKA20] Jaspreet Singh, Zhenye Wang, Megha Khosla, and Avishek Anand. Valid
explanations for learning to rank models. arXiv preprint arXiv:2004.13972,
2020.

[TTJ+07] Liu Tieyan, Qin Tao, Xu Jun, et al. Letor: Benchmark dataset for research
on learning to rank for information retrieval. In Proceedings of the Workshop
on Learning to Rank for Information Retrieval, pages 137–145, 2007.

[VG19] Manisha Verma and Debasis Ganguly. Lirme: locally interpretable ranking
model explanation. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
1281–1284, 2019.

[VRH17] Jan N Van Rijn and Frank Hutter. An empirical study of hyperparame-
ter importance across datasets. In AutoML@ PKDD/ECML, pages 91–98,
2017.

[WS] Jingang Wang and Dandan Song. Bit and msra at trec kba ccr track 2013.

[ZCD+18] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong,
Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie,
Mani Parkhe, et al. Accelerating the machine learning lifecycle with mlflow.
IEEE Data Eng. Bull., 41(4):39–45, 2018.

[ZWB+20] Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Alexander Grushet-
sky, Yonghui Wu, Petr Mitrichev, Ethan Sterling, Nathan Bell, Walker
Ravina, and Hai Qian. Interpretable learning-to-rank with generalized ad-
ditive models. arXiv preprint arXiv:2005.02553, 2020.

69

Statement of Authorship /
Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Masterarbeit selbstständig und außschließlich
unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe.
Die aus fremden Quellen direkt oder indirekt übernommenen Stellen sind als solche kenn-
tlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form weder einer anderen Prüfungs-
behörde vorgelegt oder noch anderweitig veröffentlicht.

UnterschriftDatum

70

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Goals
	Research Questions
	Research Methodology
	Thesis Outline

	Related Work
	Concepts
	Information retrieval
	BM25
	Machine learning
	Neural Networks

	Bipartite ranking
	Learning to Rank (LTR)
	Pointwise
	Pairwise
	Listwise

	Evaluation metrics
	Explainable AI (xAI)
	SHapley Additive exPlanations (SHAP)

	Used Technologies
	Algorithms
	Traditional Machine learning for LTR
	Pointwise LTR using Random Forest Classifier
	Pointwise and Pairwise LTR using XGBoost

	Neural Networks for LTR using tensorflow-ranking
	Pointwise LTR using tensorflow-ranking
	Pairwise LTR using tensorflow-ranking
	Listwise LTR using tensorflow-ranking

	Feature Selection Methods
	Sampling Strategies
	Benchmarking

	Demand Processing Pipeline; Design, Implementation and Evaluation
	Data
	Raw Data
	Feature Generation using OpenSearch

	Experimental Setup
	Experiments with the handcrafted features
	Pipeline
	Results

	Intermediate experiments with features generated using OpenSearch
	Pipeline
	Results

	Final experiments with features generated using OpenSearch
	Pipeline
	Results

	User Study
	Observations

	Discussion
	Conclusion and Future Work
	Appendices
	79 handcrafted features

	Bibliography
	Statement of Authorship / Selbstständigkeitserklärung

