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Summary

On April 2019, the High-Level Expert Group on AI, appointed by the European
Commission, presented the document “Ethics Guidelines for Trustworthy Artifi-
cial Intelligence”. In these guidelines, the group identifies seven key requirements
that AI systems should meet in order to be considered trustworthy. To meet these
requirements, companies need to apply a combination of both organizational and
technical adjustments to their AI systems.

This work focuses on two key technical aspects of a trustworthy AI: interpretabil-
ity of the underlying machine learning model and fairness in the decisions taken by
the system. Model interpretability can be defined as the degree to which a human
can understand the cause of a decision, while machine learning fairness refers to
the property of an AI system to not base his decisions on sensitive attributes, like
gender or skin colour. These concepts are extensively analysed in the first part of
the thesis, and a selection of algorithms, frameworks, and tools available for sup-
porting the processes of comprehending an AI system’s behaviour and detecting
biased decisions is presented. Several solutions that can be adopted to mitigate the
biases embedded in an AI system are also discussed.

In the second part of this work, the topics of interpretability and fairness are
applied to the use case of a loan approval process. The algorithms and frameworks
presented in the first part of the thesis are exploited to build an internet-based
application that allows the user to manage the whole life cycle of a machine learning
model, provide an interpretation of the model’s output, and monitor the model’s
decisions to detect and react to unfair behaviours. An overview of the architecture
and interface of this model management application is presented, and the most
interesting components of the application are discussed in detail and compared to
existing solutions.
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Chapter 1

Introduction

Over the last decades, the rise of information technology has led to an increase
in the amount of data that is being generated by people all over the world. Ac-
cording to the report “DataAge 2025” by IDC [34], the quantity of digital data
available in 2018 amounted to 33 zettabyte, and this number is expected to grow
up to 175 zettabyte by 2025. The increasing availability of data introduces several
new possibilities for companies to extract valuable information capable of improv-
ing their decision making processes. However, for this scenario to happen, data
analysis techniques must evolve accordingly to keep up with the speed to which
new data is being generated, and to overcome the human limit when it comes to
processing new information. The need to process increasingly large quantities of
data with the goal of extracting valuable insights was one of the main reasons
that led to the development and adoption of machine learning techniques. Through
these strategies, an artificial intelligence (AI) system is able to automatically learn
new behaviours based on previous experience without being explicitly programmed.
Machine learning algorithms are being adopted in a wide variety of fields such as
medicine, finance, and fraud detection.

As machine learning techniques, and the AI systems based on them, are be-
coming ubiquitous, concerns are starting to arise whether the development of these
pieces of software, and the decisions made by them, should be based on a set of
ethical principles. Indeed, artificial intelligence advances offer a unique opportunity
to promote social equity, sustainability, and process optimisation. However, along
with these great benefits, AI systems also threatens to empathise social injustice
and provide sub-optimal, unintelligible decisions that can’t be easily controverted.
To minimise these risks, AI systems must be designed to be human-centric, that is,
people must commit to use these tools “in the service of humanity and the common
good, with the goal of improving human welfare and freedom” [26]. In other words,
for AI systems to act on behalf of a common good, their development, deployment,
and usage must be based on the principle of trustworthiness.
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Introduction

1.1 Ethics Guidelines for Trustworthy Artificial
Intelligence

On April 2019, the High-Level Expert Group on AI ( AI HLEG ), appointed by the
European Commission, presented the document “Ethics Guidelines for Trustworthy
Artificial Intelligence” [26]. Through these guidelines, the group aims to build a
horizontal foundation to promote and achieve what they refer to as “Trustworthy
Artificial Intelligence”. As the guidelines’ authors note, the concept of Trustworthy
AI is made of three main components: compliance with existing laws and regulations
(lawful AI ); alignment with society’s ethical principles, even in those situations in
which no regulation has been developed yet (ethical AI ); robustness both from
a technical and social perspective in order to avoid incorrect behaviours that may
cause unintentional harm (robust AI ). These three components all contribute to the
trustworthiness of the AI system as a whole. Nonetheless, there may be situations in
which pursuing all three components at the same time is unfeasible, and a trade-off
must be reached.

In the ethics guidelines, the AI HLEG group identifies four ethical principles
that must be satisfied in order for an AI system to be considered trustworthy: re-
spect for human autonomy, prevention of harm to other human beings, fairness of
the AI system’s decisions, and explicability of the outcome of an AI system. These
principles offer the foundation of a framework that can be used as a reference to
build trustworthy AI systems. This framework, proposed by the AI HLEG group,
is based on the alignment to seven key requirements that provide a practical trans-
lation of the ethical principles previously identified:

Human agency and oversight AI systems must align with the principle of re-
spect for human autonomy, which means that they must act as promoters of
fundamental rights, support user’s agency and allow human oversight, thus
providing the users the tools to monitor and assess the way an AI system
works.

Technical robustness and safety This requirement states that AI systems must
be designed following a preventive approach to risk, in order to minimise the
chances that the system behaves in an unpredicted and harmful way. More-
over, to satisfy technical robustness, AI systems must also provide accurate,
reproducible, and reliable results.

Privacy and data governance To realise the principle of prevention of harm, AI
systems must guarantee the privacy of their users, as well as adequate data
protection measures. This requirement also highlights the importance of the
quality of the data used to train the underlying machine learning model, and
the risk of having a dataset which contains socially constructed biases that
might influence the model’s training.
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Transparency AI systems should provide clear explanations of their result, and
the way they interact with the user should never be interpreted as though the
decision were made by a human rather than a machine.

Diversity, non-discrimination and fairness In order to satisfy the principle of
fairness, the user must be aware of existing biases that may lead the AI system
to discriminate certain groups or individuals. Furthermore, AI systems should
be accessible to people of any age, gender, and abilities.

Societal and environmental wellbeing AI systems should be designed in a way
that addresses the environmental concerns and enhances social skills.

Accountability The algorithms that govern a company’s AI system, as well as
the data and the design processes from which this system stems, should be
auditable by users internal or external to the organisation. The system should
also offer the capability to monitor its actions and decisions, and should alert
the user when some behaviour might negatively influence the final outcome.

These requirements affect the whole life cycle of an AI system and influence the
several stakeholders that interacts with the system. This includes the developers
that design the system, the deployers that exploit the AI system in their business
processes, and the end users that are affected by the system’s decisions. The present
work addresses the problem of meeting the afore mentioned requirements from a
technical perspective, and focuses on the technical factors that support the devel-
opment of an AI system that satisfies the principles of fairness and explicability.

1.2 Context and scope of this work
This work is the result of a five-months full-time internship at Blue Reply s.r.l., a
branch of the Reply holding which specialises on IBM technology. While the origi-
nal project concerned the application of machine learning techniques to support a
loan approval process, the growing need for clear explanations and the subsequent
release of the Ethics Guidelines provided the perfect testing ground for evaluating
the most popular solutions for model interpretability and machine learning fairness.
The scope of this work is thus to provide an in depth analysis of the most recent
algorithms and tools capable of providing the foundation to develop an AI system
which satisfies the fairness and explicability principles identified by the AI HLEG.
A selection of these solutions is then applied to the afore mentioned loan approval
use case, with the goal of developing a model management tool capable of support-
ing the user throughout the life cycle of a machine learning model. The resulting
internet-based application also provides the possibility to monitor the model’s be-
haviour, obtain an explanation for its outcome, and asses the fairness of the model’s
decisions.
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The work is structured as follows. Chapter 2 provides an overview of the in-
terpretability problem. It presents the most commonly known solutions to assess
a model’s behaviour, and describes some more sophisticated techniques capable of
providing an explanation independently of the machine learning algorithm used to
train the model. It concludes by presenting some frameworks and tools that pro-
vide an easier access to the proposed strategies. Chapter 3 analyses instead the
fairness concept, its different definitions, and the algorithms that allow to mitigate
the biases that might be embedded in an AI system. Some frameworks and tools
that support the end user or developer during the fairness monitoring process are
also presented. In Chapter 4 the techniques previously analysed are applied to the
loan approval process, and the resulting application’s structure and interface are
presented by focusing on the most value adding features. This tool is then compared
to similar solutions analysed in the previous chapters. Finally, Chapter 5 draws the
work’s conclusions and describes some improvements that might be introduced in
future versions of the presented model management application.

9



Chapter 2

Interpretability

One of the core features required for artificial intelligence systems to be trustworthy
is their capability to provide the user with an explanation for why a specific pre-
diction was made. This property is crucial for building trust in the decisions taken
by a model, and is one of the key factors that influence the adoption of machine
learning techniques inside high risk fields. This chapter analyses the interpretabil-
ity problem by first presenting the reasons why machine learning models should
provide explanations for their outputs. In the second section, the most commonly
used solutions to gather insights on a model’s predictions are discussed. The third
chapter presents some of the most widely adopted model agnostic algorithms for
model interpretability. Finally, the fourth section describes a variety of tools and
frameworks available for supporting the process of understanding how a machine
learning model works and for interpreting its results.

2.1 The need for interpretability
In the last decades a wide array of machine learning algorithms has been proposed
to help extracting insights and making predictions from large collections of data.
As the amount of data being collected grew and these algorithms became faster
and more accurate, their applications have extended to several different fields. Ma-
chine learning models are used to predict stock prices, to identify the presence of
cancerous tumors or, as in the use case presented in this work, to decide whether
to grant a loan to bank customers. Given the specific field of application, the risk
associated to the prediction being computed may vary greatly. This is why it is
crucial to be able to understand the reasons why a prediction was made. There are
situations in which having the capabilities to interpret a result and to understand
the factors that contributed to it is far more important than having the model with
the highest possible accuracy. This is one of the reasons why simpler algorithms,
such as decision trees and logistic regression, are widely used despite being less
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accurate then other options like neural networks and support vector machines.
Linked to the interpretability of a model is the concept of fairness. This concept

is discussed in more detail in Chapter 3, but it’s still worth noting how the ability
to understand which factors contributed the most to a prediction helps the process
of detecting biases embedded in the trained model. As an example, let’s consider
the situation in which a black person requests a loan. The model may be biased
towards white people, hence the loan may not be granted to a customer based on
his skin colour alone. The capability to understand how a prediction was made
can help exposing the discriminatory behaviour of the machine leaning model, thus
allowing to recognise and fix the bias.

Another reason why interpretability is needed is that it provides a strategy to
debug previously trained model, that is, to discover behaviours that lead to incorrect
results. To provide an example of the way interpretability techniques can be used
to understand how a model works and debug incorrect behaviours, a real use case is
presented next. As part of an application designed to support the management of a
power plant, there was the need to train a model to recognise, based on the photo of
a special type of switch, whether the switch was turned on. Though the model had
a really high accuracy independently on the position in which the photo was taken
and the lightning conditions, it was decided to use a model agnostic interpretability
algorithm to gain further insights on which parts of the image contributed the most
to the prediction. For this use case, the specific algorithm chosen to perform the
task was LIME, a technique described in more detail in Section 2.3. Figure 2.1
shows the result of this test. A mask was applied to the photo to highlight which
parts of the image contributed positively to the prediction, and which parts had a
negative influence. As expected, the interpretability algorithm was able to correctly
identify the handle. However, the algorithm highlighted how the overlying plate also
influenced the final decision. This insight was essential to discover that, among the
photos used as the training and test set, the ones in which the switch was turned on
had a plate of similar size, while the photos where the switch was turned off had a
smaller plate. Therefore, this pattern was learnt by the model and used to predict
the switch’s status in new photos. This example shows how an interpretability
algorithm allowed to both gain further understanding on how the model behaved,
and with that to uncover an incorrect behaviour of the model.

The ability to explain why a prediction was made, and the possibility to debug a
model and uncover discriminatory behaviours, all contribute to the trustworthiness
of a machine learning model.
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Figure 2.1: On the left, the original photo with the switch turned on. On the right,
a mask has been applied to the original photo to highlight which parts of the
image have a greater contribution on the model decision. The parts that positively
influence the decision are shown in green, while the portions of the image that have
a negative contribution are shown in red

2.2 Traditional solutions
The problem of understanding how a model works and measuring its performance
has been around for a long time. Since the birth of the first machine learning
algorithms, different techniques have been introduced to improve the confidence on
the trained model. This section describes the most popular strategies for evaluating
the goodness of a model and its predictions.

2.2.1 Interpretable models
Different machine learning algorithms are not only characterized by different per-
formances but, depending on the algorithm used, they may also provide insights
on why a specific decision was taken. In many high risk situations, the possibility
to understand the inner workings of a model may be as important as the perfor-
mance of the model. This section lists some of the most popular machine learning
algorithms capable of training a model that can be easily interpreted.

Decision tree algorithms

Decision trees are among the most widely used classification algorithms due to
their fast performances and their ease of representation. The goal of this family
of algorithms is to build a tree-like graph, where each internal node, also called
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decision node, represents a condition on the dataset features, and the leaf nodes
are the final outputs of the model. Starting from the root node, its condition is
applied to the instance to predict and, based on the result of such a test, one of
the available branches is traversed. Then, the same steps are repeated until a leaf
node is reached.

An example of decision tree, computed from the Kaggle Titanic dataset [1], is
presented in Figure 2.2. As shown by the image, it is very easy to visualize the
internal structure of the model, as well as to understand the process that led to a
particular decision.

Figure 2.2: An example of a simple decision tree, built using the Titanic dataset

There are several strategies that can be followed to build decision trees. The
most used ones include CART [15] and C4.5 [33], which follow a top-down greedy
approach. Starting from the entire population, the algorithm selects the best con-
dition to be used to split the data into two or more groups. Such condition varies
depending on the type of attribute based on which the population will be split (i.e.
nominal, ordinal or continuous), as well as the number of outgoing edges. The at-
tribute on which the split will be applied is chosen based on the attribute that has
a more homogeneous class distribution. There are several metrics available to mea-
sure the impurity of a node. The most popular ones are the Gini Index, the entropy
and the classification error rate. The choice on which metric to use depends on
the specific algorithm used to build the tree. The other nodes are then recursively
created following the steps described above. The process continues until no split is
possible (either because the records in the identified region have similar attribute
values or because all the instances belong to the same class), or when a stopping
condition is reached. The most common stopping conditions are when the tree has
reached its maximum depth, when a split does not improve the impurity measure,
and when the number of instances in the current region is below a user-defined
threshold. In this situation, the class with the highest cardinality in that group is
selected to characterize the leaf node.
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The advantages associated with decision trees are that they are inexpensive to
generate and are fast at classifying unknown records. The trained model can be fully
visualized and its representation can be easily understood even by non-experts. It
is also possible to grasp the motivations behind a single prediction by following
the sequence of decisions taken by the model. The same procedure can be used
to determine which are the attributes that are considered more relevant. However,
as the tree grows in size, the model becomes harder to understand. For instance,
Figure 2.3 depicts a model obtained from the same Titanic dataset [1] previously
used, but without limiting the maximum depth of the tree. The size of the new
decision tree prevents the trained model from being easily interpreted. Moreover,
there is the risk of having an excessive data fragmentation due to the population
being split across multiple nodes, which may lead to nodes in which the number
of instances does not allow to make any statistically significant decision. Finally,
there are several algorithms that outperform decision trees in terms of accuracy.

Figure 2.3: A decision tree built from the same Titanic dataset as before, without
limiting the maximum depth of the tree

Nonetheless, decision trees are among the most widely used algorithms due to
the advantages described above. They also provide the basis for more complex
algorithms such as Random Forests and Gradient Boosting, which provide higher
accuracy, but are harder to interpret.

Rule-based classification

Rule-based classifiers refers to classifiers that make use of IF-THEN rules for class
prediction. A rule is usually made of two parts: the condition that must be satisfied
by the instance at hand (also called antecedent) and the prediction. A prediction
can also be the result of several condition being applied on the instance attributes.
When a record can be described by a rule antecedent, then the instance is said to
be covered by the rule.

14



Interpretability

Each rule can be evaluated by means of two main metrics: support and accuracy.
The support of a rule refers to the percentage of instances to which the condition of
a rule applies, while accuracy is a measure of how accurate the rule is at predicting
the correct class for the instances to which the condition of the rule applies.

In order for each instance to be correctly classified, rules must have two proper-
ties: they must be both mutually exclusive and exhaustive. Mutual exclusion means
that two rules can’t be true at the same time, while exhaustiveness refers to the
fact that each instance must be satisfied by at least one rule. By following these
requirement, rules may become longer, more complex, and less readable. To over-
come these limitations, the afore mentioned constraints need to be relaxed, which
leads to the loss of the previously described properties. The mutual exclusion issue
can be overcome either by organizing the rules in an ordered list, or by creating
an unordered rule set where some rules have a higher voting power and there is
a strategy to resolve potential conflicts. Instead, the loss of exhaustiveness can be
solved by using a default fallback class when no rules apply.

Another key element of rule-based classifiers is the rule induction algorithm,
that is, the strategy through which new rules are generated. Rules can be derived
indirectly from an existing classification model, such a decision tree, or they can be
extracted directly from the data by means of algorithms such as OneR, Sequential
covering, or Bayesian Rule Lists.

Rule-based classifiers have the advantage of being very fast to generate. Pre-
dicting the label of an instance based on a rule is also very fast. Rules are also as
expressive as decision trees, while being more compact and more readable. Rule-
based classifiers also share with decision trees many of their disadvantages. They are
often not as performing as other, more complex algorithms, and they also perform
badly when the features being evaluated are not categorical.

Linear regression

Linear regression is a strategy to predict a continuous target value as a weighted sum
of the feature inputs. Using this strategy it is possible to model the dependence
of a target variable on a set of features as a linear relationship. The modelled
relationship takes the following form:

y = β0 + β1x1 + ... + βnxn + Ô (2.1)

where y represents the target variable and x1, ..., xn are the n instance’s features.
β1, ..., βn are the weights of the model, β is the intercept term, and Ô is the error
variable. Weights can be computed using several methods, such as the Ordinary
Least Squares and Gradient Descent.

The main advantage of linear regression is that, once the model has been trained,
estimating the target value for an unknown record is straightforward, since the
only action required is to substitute the feature and weight values in Equation 2.1.
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Furthermore, linear regression models can be easily interpreted by extracting the
computed weights. Models trained with linear regression also come with several
drawbacks. They are only suitable to model linear relationships, hence they have
a tendency to oversimplify the reality, and they are sensible to outliers. Moreover,
linear regression is not suitable for classification tasks, for which logistic regression
should be used.

Logistic regression

Unlike linear regression, logistic regression is used to model the probabilities for
binary classification problems, that is, problems in which the outcome can only
take on two possible values. The main difference between the two techniques is
that in logistic regression the function used to compute the probabilities is the
logistic function.

P (y = 1) = 1
1 + exp(−(β0 + β1x1 + ... + βnxn)) (2.2)

Logistic regression also shares many of its advantages and disadvantages with
linear regression. In addition to performing classification tasks, the main output
of logistic regression is a probability, which can provide additional information to
the person who requested the prediction. On a different note, due to the logistic
function used to compute the probability, the interpretation of the weights is more
difficult with respect to the ones obtained with linear regression.

2.2.2 Model evaluation metrics
The most common way to evaluate the performance of a model, make a comparison
across different models, and build confidence in the goodness of the obtained re-
sults is through model evaluation metrics. This section describes the main metrics
available and the techniques used to estimate them.

Estimation methods

Metrics are estimated by first splitting the data set into two different sets: one used
for training the model and a test set used to evaluate the performance of the model.

The simplest technique to perform this partitioning is called holdout. With this
strategy, the data set is split into two disjoint groups of p ∗ N and (1 − p) ∗ N
instances. Typically, p is equal to 1/2 or 2/3. The first partition obtained is the
training set, while the second is the test set. This procedure can be iterated in order
to compute the average performance of the model over different partitions. Holdout
is especially useful when dealing with very large data sets, for which more accurate
techniques might result in a longer computation time.
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A finer grained strategy is k-fold cross validation [39]. Through this technique,
the data set is split into n partitions (folds) of the same size. Then, the first n− 1
folds are used to train the model and the remaining one is used as the test set.
This process is then iterated for all partitions in order to obtain a reliable estimate
of the performance of the model. With k-fold, there is a risk that folds might be
unrepresentative of the data set as a whole. This issue can be solved by adopting
a stratified cross validation approach instead. Through this variant of the k-fold
technique, the data set is split into folds in which the original distribution of the
instances is preserved.

Another technique frequently used is bootstrap [20]. In bootstrap, each training
set is formed by randomly drawing instances from the initial dataset with replace-
ment. The trained model is then tested on the remaining instances, and an estimate
θi is computed. The process is repeated b times and a sampling distribution is built
from the obtained estimates. This distribution is then exploited to make further
inferences.

Accuracy, confusion matrix and ROC curve

Once the initial data set has been split into different partitions and the model
has been trained on the training set, it’s time to evaluate the performance of the
model on the test set. This is achieved by computing a set of metrics based on the
comparison between the predictions made by the model and the actual label values
associated with the test set instances.

Confusion Matrix A confusion matrix is a table used to describe the performance
of a classification model on the test set. Each row of the matrix represents
the instances in a predicted class, while each column lists the instances in an
actual class. A confusion matrix for a binary classifier can be represented like
in Figure 2.4.
In a binary confusion matrix, the quadrants split the entire test set in four
groups:

True Positives The instances in which the predicted and actual classes are
both positive

False Positives The instances in which the predicted class is true, but the
actual class is false

False Negatives The instances in which the predicted class is false, but the
actual class is true

True Negative The instances in which the predicted and actual classes are
both negative
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Figure 2.4: A binary confusion matrix

Accuracy Accuracy is perhaps the simplest technique to evaluate the performance
of a model. It is defined as the ratio of the number of correct predictions to
the total number of input samples. For binary classifiers, it can be computed
as:

Accuracy = TP + TN

TP + TN + FP + FN
(2.3)

While being widely used, it is not always the best metrics to measure the
performance of a model, especially when dealing with imbalanced data sets.
In such situations, the interest is usually in identifying the instances with the
minority class. Hence, if the model get most of the minority class instances
wrong, but correctly predicts the label for the records belonging to the major-
ity class, it will result in a high accuracy, even though the model is not able
to correctly identify instances belonging to the minority class. Moreover, ac-
curacy is not suitable when dealing with situations in which different classes
have different relevance. To solve this issue other measures like recall and
precision can be used.

Recall It can be described as the ratio of the number of true positives to the total
number of instances with the positive class. For binary classifiers:

Recall = TP

TP + FN
(2.4)

Precision Measures the ratio of the number of true positives to the total number
of instances that were predicted positive. For binary classifiers:
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Precision = TP

TP + FP
(2.5)

F-Score When measuring the performance of a model, recall and precision can
give opposite results. F-Score can be used to summarise both metrics and it
is defined as the harmonic mean of recall and precision.

FScore = 2 · precision · recall

precision + recall
(2.6)

ROC Curve The Receiver Operating Characteristic curve is a plot used to repre-
sent the performance of a classification model as its discrimination threshold
is varied. It is created by plotting the true positive rate (TPR, also known as
recall, see Equation 2.4) against the false positive rate (FPR, see Equation
2.7) at various threshold settings. An example of a ROC curve is shown in
Figure 2.5.

FPRate = FP

FP + TN
(2.7)

Figure 2.5: An example of a ROC curve

ROC curve can be used to compare the performance of different models,
especially when dealing with imbalanced data sets. One key metric that is
used for this task is the Area Under Curve (AUC), which measures the two-
dimensional area underneath the ROC curve and provides a summary of the
model performance across all discrimination thresholds.
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2.2.3 Data visualisation techniques
Data visualisation techniques can be exploited to gain greater understanding of the
data available, discover insights and hidden patterns, and understand the choices
of a machine learning algorithm. As other strategies described in this chapter, this
is not a new concept. Data visualisation is used on a wide variety of fields due
to its effectiveness in conveying information about the data at hand. An example
of process that heavily relies on graphical representation is the exploratory data
analysis (EDA), which is one of the most important steps when approaching a
new dataset to understand how the data is structured and to start recognising
hidden patterns and outliers. To explore the data available, EDA makes large use
of graphical data representations such as box plots, histograms, and scatter plots.

There are several plots that can be used to analyse a given dataset. The most
important ones are listed below:

Line chart This plot is used to display the information related to a sequence of
data points collected at a regular interval. The points are then connected
using a line segment to better display the trend. (Figure 2.6a)

Bar chart The bar chart is generally used to display the relationship between a
categorical (or discrete) feature and one or more numerical values. For each
categorical value one or more bars are displayed. The length of each bar is
defined by the numerical value associated to the selected categorical value.
(Figure 2.6b)

Histogram Histograms are used to visualise the distribution of a feature. They are
characterised by different bins, each of which is represented by a bar which
height depends on the number of values that falls into that bin. (Figure 2.6c)

Scatter plot This plot summarizes the relationship between two features. Each
point of the scatter plot represents a single observation, and its position is
based on the value of the analysed attributes for that specific instance. (Figure
2.6d)

(a) Line chart (b) Bar chart (c) Histogram (d) Scatter plot

Figure 2.6: Example of different types of plots
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2.3 Model-agnostic algorithms
In the previous section, the most common model evaluation strategies have been
introduced. Though these techniques provide a good overview of the model perfor-
mance, they do not offer any insights on why the model predicted a class instead of
another. Some additional information can be extracted by providing a visual repre-
sentation of the data set, but this strategy is not always the best solution. Moreover,
most graphical representations can’t be easily interpreted by non-expert, which is
a problem when designing a solution that should encourage them to trust and
critically evaluate the model decisions.

To overcome these limitations, in recent years a number of algorithms have been
designed to provide insights on which features are most likely to influence the model
predictions. These algorithms can be divided in two classes:

Model-specific solutions These algorithms are limited to specific model classes.
They are able to provide further insights on a model prediction by exploiting
the specificities of the model class of interest. An example of a model-specific
interpretation is the extraction of weights from a logistic regression model.
There are also solutions that deals with more complex machine learning mod-
els such as DeepLift [38], which is used to compute importance scores in deep
neural networks.

Model-agnostic solutions These algorithms can be used on any machine learn-
ing model and are applied after the model has been trained. These strategies
usually consider the model as a black box and they work by analysing only
the feature input and the model output. They provide greater flexibility with
respect to model-specific solutions, since they can be applied to a model re-
gardless of its class.

Since the goal of this work is to build a tool to support the creation of trust-
worthy artificial intelligence systems regardless of the specific machine learning
algorithm they’re based on, in the next pages we will focus only on reviewing the
most popular model-agnostic solutions.

2.3.1 LIME
LIME (Local Interpretable Model Agnostic Explanation) [36] is an algorithm used to
access the behavior of any model (base estimator) using local interpretable surrogate
models such as linear classifiers or regressors. As the authors state, the overall goal
of LIME is to identify an interpretable model (e.g. decision tree, logistic regression)
over the interpretable representation that is locally faithful to the classifier.

The insights derived from LIME can be used to enhance the comprehension of an
otherwise black box model, hence helping experts in the process of debugging their
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own models and provide easy to read explanations of which features contributed
the most to producing a specific output and how they influenced the final result.

The output of the algorithm can be used to generate graphs that can be eas-
ily understood by non-technical people, thus allowing to build trust in the model
that was produced, identify biases embedded in the dataset and in the model, and
validate people’s intuitions about why a certain prediction was made.

As its name implies, LIME is model-agnostic, which means that it can work on
any classification model independently of its complexity. It can be used in the field
of text classification, image classification, as well as it can be applied to tabular
data.

Instead of trying to fit a global surrogate model, LIME focuses on fitting a lo-
cal surrogate model to explain why single predictions were made. Global surrogate
models can be defined as interpretable models that have been trained to approxi-
mate the predictions of a black box model. Instead, local surrogate models do not
try to approximate the whole model, but they try to learn an interpretable model
only locally around the prediction of interest. This strategy overcomes the main
limitation of global surrogate models, that is, the fact that they provide a simplis-
tic view of the model, hence they are not able to fully explain the inner workings of
the original model. Instead, by evaluating the model locally, Ribeiro et al. obtains
a model that is locally faithful, i.e. it corresponds to how the model behaves in the
vicinity of the instance being predicted. As the authors argue, local fidelity still
does not imply global fidelity, because features that are globally important may
not be important in the local context, and vice versa.

On a high level, the way LIME works can be described as follows: to generate
its explanations, LIME tests what happens to the predictions of a black box model
when it is fed with variations or perturbations of the original dataset. Typically,
LIME generates a new dataset consisting of perturbed samples and the associated
black box model’s predictions. On this dataset LIME then trains an interpretable
model weighted by the proximity of the sampled instances to the instance of interest.
The model obtained through this process is then used to explain why a specific
prediction was made.

As an example of what is the authors intuition for LIME, Ribeiro et al. provide a
toy example that is presented in Figure 2.7. In the image, the blue/pink background
represents the decision function f of the black-box model. The bold red cross is the
instance being explained. The remaining circles and crosses represents the other
sample instances, and their size is representative of the proximity to the instance
of interest. Finally, the dashed line is the learned explanation which is locally (but
not globally) faithful.

To describe how LIME works on a lower level, Ribeiro et al. specify the following
definitions:

• g ∈ G is used to represent the explanation of a black box model, where G is a
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Figure 2.7: An illustration of the intuition behind LIME [36]

class of potentially interpretable model, such as linear models, decision trees,
or falling rule lists. This means that the explanation can be displayed to the
user by means of visual or textual artefacts. These models are referred to as
potentially interpretable because, even though they can be easily understood
by humans, this largely depends on the complexity of the explanation.

• Ω(g) is defined as a measure of complexity of the explanation g ∈ G. The
higher complexity is, the harder it is for a human to interpret the model.
This measure largely depends on the model being used as explanation by
the algorithm. For instance, as already discussed in the section about inter-
pretable models, for decision trees Ω(g) may be the depth of the tree.

• The model being explained is denoted as f : Rd → R, where f(x) represents
the probability that x belongs to a specific class (if we consider classification
algorithms).

• πx(z) denotes the proximity measure between an instance z to x. This is the
measure used to weight the instances differently based on the vicinity to the
instance being predicted, thus ensuring that the explanation produced by the
algorithm is locally faithful.

• Finally, L(f, g, πx) is defined as the locality-aware loss and it is a measure of
how unfaithful g is in approximating f . This measure is then weighted by the
proximity measure πx(z) to define the locality of x. In the article [36], Ribeiro
et al. suggest the usage of a locally weighted square loss function, as defined
in Equation 2.8, where πx(z) = exp(−D(x, z)2/σ2) is an exponential kernel
defined using some distance function D with width σ. For instance, cosine
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distance can be used for text and L2 distance for images. Nonetheless, the
explanation can be obtained by using any fidelity function L.

L(f, g, πx) =
Ø

z,zÍ∈Z
πx(z)(f(z)− g(zÍ))2 (2.8)

By using the previously specified definition, it is now possible to present the
formal definition of LIME. As already stated, the goal of LIME is to provide a
model that is both interpretable and locally faithful to the instance being explained.
To enforce these properties, the loss function L(f, g, πx) must be minimized while
keeping Ω(g) as low as possible in order for the explanation to be easily interpreted
by human. The formulation is presented in Equation 2.9.

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (2.9)

2.3.2 Shapley values
The Shapley value, introduced by L.S. Shapley in 1953 [37], is a concept taken
from game theory. Given a game which requires several players to cooperate, the
goal of this technique is to understand how much each player contributed to the
final outcome, or payout. To put it differently, it’s a method for assigning payouts
to players based on their contribution to the total payout. Players cooperate in a
coalition and receive a certain profit from this cooperation. This means that the
distribution of the total payout is not only based on how well each player performed
individually, but also on the marginal contribution provided by this player when it
cooperates with other players.

Let N be the set of all n players that participate in the game. v : 2N → R is a
function that assign to each subset of players their total contribution to the game.
The contribution is expressed as a real number. In particular, v(∅) = 0 states that
the contribution brought to the game by an empty subset of players is equal to 0.
Then, the Shapley value for player i can be expressed as follows:

ϕi(v) =
Ø

S⊆N\{i}

|S|!(N − |S| − 1)!
N ! (v(S ∪ {i})− v(S)) (2.10)

where the sum extends over all the possible permutations of the subset of players
in which player i is not included and v(S ∪ {i}) − v(S) computes the marginal
contribution that is brought by player i to subset S. The result is given by the
average marginal contribution of player i to all possible permutations of subset
N\{i}.

The concept of Shapley values can be applied to machine learning to provide
an alternative way of interpreting a prediction performed by a black-box machine
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learning model. This is achieved by assuming that each feature value of the instance
is a player and the prediction outcome minus the average prediction for all instances
is the total payout. Then we can use the Shapley values to understand how the pay-
out (i.e. the difference between the actual prediction and the average prediction)
can be equally distributed among the different players (feature values of the in-
stance). In this situation, the Shapley value is the average marginal contribution of
a feature value across all possible coalitions.

To compute the marginal contribution brought by a feature value to a subset of
other feature values the most straightforward way is the following one: let S be a
subset of feature values of the instance being predicted and i the feature value for
which the Shapley value must be computed. The first step is to draw from the data
set a new instance of the data and to substitute its feature values to the ones of the
instance being predicted, with the exception of the subset of features S∪{i}. Then,
a new prediction is performed on the generated instance by using the black box
model. The next step is to generate another instance, this time by keeping only
the subset S and by replacing all other feature values, and to perform a second
prediction on this new instance. The difference between the two predictions can be
assumed to be an estimate of the marginal contribution v(S ∪ {i}) − v(S). Since
this estimate depends on the values of the instance that was randomly drawn from
the data set, the process is repeated and the computed contributions are averaged
to better estimate the marginal contribution of i to S. The process is then repeated
for all possible coalitions.

The Shapley value is the only attribution method that satisfies the properties
efficiency, symmetry, dummy and additivity, which together can be considered a
definition of a fair payout [32].

Efficiency The sum of all feature contributions is equal to the difference between
the prediction for the instance to be explained and the average prediction.

nØ
i=1

ϕi = f̂(x)− EX(f̂(X)) (2.11)

where qn
i=1 ϕi is the sum of all the computed Shapley values, f̂(x) is the

actual prediction, and EX(f̂(x) is the average predicted value.

Simmetry If two feature values i and j equally contribute to all possible coalitions,
their contribution should be the same.
Let val(X) be the contribution of subset X to the total payout, if

val(S ∪ xi) = val(S ∪ xj),∀S ⊆ {x1, ..., xn}\{xi, xj}

then ϕi = ϕj
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Dummy If a feature i does not change the predicted value regardless of which
subset of features it is added to, then its Shapley value should be 0. If

val(S ∪ xi) = val(S),∀S ⊆ {x1, ..., xn}\{xi}

then ϕi = 0

Additivity For a game with combined payouts val + val+ the respective Shapley
values are as follows: ϕi + ϕ+

i

Let’s suppose a game is made of several payouts that must be combined
together. To do so, it is sufficient to average the payouts - and the associated
Shapley values - to get the payout and Shapley values for the whole game.

The main difference between the Shapley values method and LIME is given by
the efficiency property, which states that by using Shapley values the difference be-
tween the actual prediction and the average prediction is fairly distributed among
the feature values of the instance. This is especially useful because the weights pro-
duced by LIME can be misinterpreted by humans, and the lack of a solid theory
might be an obstacle to the process of building trust on the model predictions. An-
other advantage of Shapley values is that, by comparing a prediction to the average
prediction of a subset of the available data, it is possible to provide contrastive
explanations, that is, an explanation of why a certain prediction was preferred over
another one.

On the opposite, the exact computation of the Shapley values might take a lot
of computing time, which makes it unfeasible in most real applications. To solve
this issue, an approximated method, such as the one proposed by Štrumbelj and
Kononenko [40], might be adopted. Moreover, Shapley values are not suitable when
producing sparse representations, since the algorithm requires for all features to be
used. Finally, since Shapley values are estimated by replacing the feature values of
the predicted instance with the values of a randomly drawn instance, it requires
access to the original data.

2.3.3 SHAP
SHapley Additive exPlanation is a model-agnostic explanation framework proposed
by Lundberg and Lee [30]. At its core, it works in the same way as the Shapley
values method does. In addition, it extends the original idea by incorporating other
approaches that allow SHAP to overcome some of the disadvantages that comes
with the SHapley values method. The framework also introduces a new class of
additive feature importance measures, along with a theoretical demonstration which
shows that in the identified class there is a unique solution with a set of desirable
properties. Through this new class, the authors seek to unify six different methods
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available in literature in order to extend them to provide improved computational
performance and/or better consistency with human intuition.

In their work, Lundberg and Lee propose a unified view of several explanation
methods, included LIME and the approximated Shapley value method proposed
by Štrumbelj and Kononenko known as Shapley sampling value method [40]. The
authors argue that each of the six identified explanation methods share the same
explanation model as they all fall in the category of the additive feature attribution
methods. To formally define this class, the following definitions must be given:

• Let f be the black-box model to be explained and g the explanation model,
that is, the simplified model which is obtained as an output from explanation
methods such as LIME. The interest here is not in explaining the whole model,
but to provide a local explanation f(x) for a given individual prediction x in
the same way as LIME does.

• xÍ represents the simplified inputs that map to the original instance being
predicted through a mapping function x = hx(xÍ). Since hx is specific to the
instance x, the function is able to correctly map xÍ even though the simplified
inputs contain less information than x.

The goal of local methods is to ensure that, whenever zÍ ≈ xÍ, the explanation
model is such that g(zÍ) ≈ f(hx(zÍ)). We can now provide the definition for the
identified class.

Definition 2.1. Additive feature attribution methods have an explanation
model that is a linear function of binary variables:

g(zÍ) = φ0 +
MØ
i=1

φiz
Í
i (2.12)

where zÍ ∈ {0,1}M , M is the number of simplified input features, and φi ∈ R.

To put it differently, methods which produce an explanation model that matches
Definition 2.1 associate to each simplified feature zÍ

i an effect φi. By summing up
the effects of all feature attributions it is possible to approximate the output f(x)
of the original model.

As Lundberg and Lee state [30], the identified class of additive feature attri-
bution methods has a single unique solution with the three desirable properties
described below.

Local accuracy The explanation model g matches the output of the black-box
model f for the simplified input xÍ.

f(x) = g(xÍ) = φ0 +
MØ
i=1

φix
Í
i (2.13)
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The explanation model g(xÍ) matches the original model f(x) when x =
hx(xÍ), where φ0 = f(hx(0)) represents the model output when all simplified
inputs are missing and set to 0. By defining φ0 = EX(f̂(X)) and by setting all
xÍ
j to 1, Equation 2.13 can be converted to the efficiency property associated

with Shapley values (Equation 2.11).

Missingness If a feature is missing in the original input x, then its impact on the
explanation model must be null.

xÍ
i = 0 =⇒ φi = 0 (2.14)

Consistency If a model changes in a way that some simplified input’s contribution
increases or stays the same regardless of the other feature values, then that
input’s attribution should also increase or stay the same. To put it in a more
formal way, let fx(zÍ) = f(hx(zÍ)) and zÍ\i denote setting zÍ

i = 0. For any two
models f and f Í, if

f Í
x(zÍ)− f Í

x(zÍ\i) ≥ fx(zÍ)− fx(zÍ\i) (2.15)

for all inputs zÍ ∈ {0,1}M , then φi(f Í, x) ≥ φi(f, x).

Given the previously described properties, there is a single solution in the class of
additive feature attribution methods which satisfies all three properties.

Theorem 2.1. Only one possible explanation model g follows Definition 2.1 and
satisfies the properties of local accuracy, missingness, and consistency:

φi(f, x) =
Ø
zÍ⊆xÍ

|zÍ|!(M − |zÍ| − 1)!
M ! [fx(zÍ)− fx(zÍ\i)] (2.16)

where |zÍ| is the number of non-zero entries in zÍ, and zÍ ⊆ xÍ represents all zÍ

vectors where the non-zero entries are a subset of the non-zero entries in xÍ.

Lundberg and Lee describes Shapley values as the only method which satisfies
all properties of local accuracy, missingness and consistency. In this setting, the
values φi are represented as Shapley values. By proposing a unified approach, the
authors seek to improve the other methods (e.g. LIME and DeepLIFT), preventing
them from violating the properties of local accuracy and missingness.

In their article, Lundberg and Lee introduce the concept of SHAP values,
which are defined as the Shapley values of a conditional expectation function of
the original model. These values represent the solution to Equation 2.16, where
fx(zÍ) = f(hx(zÍ)) = E[f(z)|zS], and S is the set of non-zero indexes in zÍ. Through
this definition, SHAP values are meant to align with the common methods for esti-
mating Shapley values, as well as allowing for connections with other methods such
as LIME and DeepLIFT.
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A graphical interpretation of SHAP values is presented in Figure 2.8. Starting
from a base value E[f(z)], which corresponds to the value φ0 in Equation 2.12
(that is, the value that would be predicted if no features of the current input were
known), the diagram shows how the predicted output f(x) is obtained by sequen-
tially considering the marginal contribution provided by each feature. While the
image presents a single ordering, when the model is non-linear or the input features
are not independent the order in which these features are added to the expecta-
tion may impact on the effects associated with the introduction of the remaining
features. Thus, SHAP values arise from averaging the φi values across all possible
orderings.

Figure 2.8: A graphical representation of the way SHAP values should be interpreted
[30]

SHAP values can be computed in several ways. While the exact computation
may be unfeasible for most situations (see the section dedicated to Shapley values),
by combining the insights derived from the additive feature attribution methods,
it is possible to compute an approximation of SHAP values. Lundberg and Lee
present two model-agnostic approximation methods for computing these values:
Shapley sampling values The first algorithm is the one originally proposed by

Štrumbelj and Kononenko [40]. While this approach can be successfully used
when dealing with a small number of inputs, when the size of the inputs
increases the Kernel SHAP method should be preferred, since it requires fewer
evaluations of the original model to obtain a similar approximation accuracy.

Kernel SHAP While the original linear LIME algorithm violates the properties
of local accuracy and/or consistency, the authors prove that, by properly
choosing the loss function L, the weighting kernel πx, and the regularization
term Ω in the LIME equation (Equation 2.9) , it is possible to use that
Equation 2.9 to recover the Shapley values.
Theorem 2.2. Under Definition 2.1, the specific forms of πx, L, and Ω that
make solutions of Equation 2.9 consistent with the properties of local accuracy,
missingness, and consistency are:

Ω(g) = 0,
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πxÍ(zÍ) = (M − 1)
(Mchoose|zÍ|)|zÍ|(M − |zÍ|) ,

L(f, g, πxÍ) =
Ø
zÍ∈Z

[f(hx(zÍ))− g(zÍ)]2πxÍ(zÍ),

where |zÍ| is the number of non-zero entries in zÍ.

Using Theorem 2.2, Equation 2.9 can still be solved by using linear regression
and the Shapley values can be computed using weighted linear regression.
Since LIME’s simplified input mapping and SHAP approximated mapping
are equivalent, it is possible to perform a regression-based, model-agnostic
estimation of SHAP values. The authors demonstrate that this approach pro-
vides better sample efficiency with respect to the classical Shapley equations.

Along with the introduction of Kernel SHAP, Lundberg and Lee also propose
other model-specific approximation methods, which provide faster performances but
are restricted to specific model types, such as linear models, deep neural networks,
and tree-based algorithms. The authors also provide a library for generating global
explanations about the model. This library will be further investigated in Section
2.4, which covers the available tools and frameworks for model interpretability.

Being deeply rooted in the Shapley values method, SHAP shares with the for-
mer all its advantages, namely, its theoretical foundation, the fair distribution of
the outcome among the feature values, and the possibility to obtain contrastive
explanations to compare the prediction being interpreted with the average predic-
tion. In addition, SHAP tries to unify different and otherwise isolated explanation
methods, most notably LIME and Shapley values. Finally, SHAP overcomes the
main limitation of Shapley values, that is, the slow computation time. This allows
to use SHAP values also to provide global model interpretation methods, such as
feature importance, feature dependence, and summary plots.

The model-agnostic approximation method proposed by Lundberg and Lee
(KernelSHAP), while more efficient than the exact computation of the Shapley
values, is still quite slow, which makes its application unfeasible when the size of
the data set and the number of instances for which to compute the SHAP values in-
crease. Moreover, many of the issues of Shapley values are shared with KernelSHAP.
When generating new instances to compute the marginal contribution of a feature
value, the presence of correlated features increase the risk for the explanation to be
based on unlikely data points. Finally, to compute SHAP values it is still required
to have access to the original data. Some of these limitations can be overcome by
adopting model-dependent solutions, such as TreeSHAP.

30



Interpretability

2.3.4 Anchor
Anchor is a model-agnostic interpretation system proposed by Ribeiro, Singh, and
Guestrin [35], the same authors of LIME. Whereas LIME creates a local surrogate
model based on the instance being explained, the goal of Anchor is to identify a set
of rules that are sufficiently able to “anchor” the prediction locally. A rule anchors
a prediction if, by changing the other feature values, the prediction outcome does
not change. By using this approach, the resulting explanation can be expressed
in the form of IF-THEN rules called anchors. In other words, provided that the
anchor holds, the prediction for an instance is (almost) always the same. As with
LIME, explanations generated by Anchor are obtained through a perturbation-
based strategy.

To formally define an anchor, the following definitions must be given:

• x is the instance being explained,

• f denotes the classification model to be explained. As with LIME, the model
can be used as a black box by Anchor to produce individual predictions f(x),

• A represents a rule, that is, a set of predicates, such that A(x) = 1 when
all feature predicates are true for instance x. To put it differently, if all the
predicates that compose A correspond to x’s feature values, then A(x) = 1,

• D is used to indicate the perturbation distribution which is generated by many
model-agnostic methods, most notably LIME and Anchor.D(·|A) denotes the
conditional distribution when the rule A applies. It indicates the distribution
of neighbours of x that match A,

• 0 ≤ τ ≤ 1 specifies the precision threshold above which a rule A is considered
valid.

A is an anchor if the following conditions are met:

• A(x) = 1, and

• A is a sufficient condition for f(x) with high probability. This means that the
precision of anchor A must be greater or equal to τ .

Formally, we can define a rule A as an anchor if

ED(z|A)[1f(x)=f(z)] ≥ τ, A(x) = 1. (2.17)

which can be interpreted as follows: considering all the instances z in the neigh-
bourhood of x such that z satisfies rule A (i.e. the perturbation space D(z|A)), if
at least τ instances lead to the same result as x (f(x) = f(z)), then rule A is a
valid anchor for x.
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In the same way they did with LIME, the authors provide a visual represen-
tation of the intuition behind Anchor. Figure 2.9 compares how the Anchor and
LIME algorithms locally explain a complex binary classifier using two exemplary
instances, which are represented using the "+" and "-" symbols. The straight line
displays the model learned by LIME, while the dashed rectangle illustrates the
anchor. The circumference labelled as D delimits the perturbation distribution D.
As the illustration shows, all LIME does is learn the linear decision boundary that
best approximates the model’s behaviour given a perturbation distribution, with-
out giving further details on how faithful such approximation is (the explanation
on the right is a much better local explanation of the black-box model than the
approximation on the left). Instead, the explanations built by Anchor are faithful
by construction, adapt their coverage to the model behaviour (the anchor on the
right of Figure 2.9 is broader), and clearly express the anchors’ boundaries.

Figure 2.9: A graphical comparison between the intuitions behind Anchor and
LIME. [35]

While computing an anchor A for an instance x based on a black-box model
f is theoretically possible, in practice, given an arbitrary distribution D, the exact
computation of the precision is unfeasible. To overcome this limitation, Ribeiro et
al. introduce a new probabilistic definition to select those anchors which satisfy the
precision constraint with a high probability. The probability threshold is given by
the parameter 0 ≤ δ ≤ 1.

P{prec(A) ≥ τ} ≥ 1− δ (2.18)
where prec(A) = ED(z|A)[1f(x)=f(z)]. If multiple anchors satisfy this criterion, the
ones that describe the behaviour of a larger part of the input space are to be
preferred. This attribute of an anchor is called coverage, and it can be formally
defined as the probability that such an anchor applies to samples from D.

cov(A) = ED(z)[A(z)]

32



Interpretability

With this definition, the search for an anchor can be defined as a combinatorial
optimization problem:

max
As.t.P{prec(A)≥τ}≥1−δ

cov(A) (2.19)

To put it differently, Anchor tries to find those rules that are most likely to have
a precision above threshold τ . Among these, it selects the one that describes the
largest part of the model. It must be noted that, as the number of predicates in
a rule grows, the precision of a rule increase at the cost of the coverage and vice
versa. Hence, there is a trade-off between precision and coverage.

Since the number of all possible anchors grows exponentially, the exact solu-
tion of the problem presented in Equation 2.19 is intractable. Thus, Ribeiro et al.
propose a multi-armed bandit formulation of the problem to efficiently explore the
model’s behaviour in the perturbation space. The approach adopted by Anchor to
build an explanation for prediction f(x) can be divided into multiple parts:

Candidate Generation Anchor A is constructed incrementally starting from an
empty rule, which applies to every instance and thus has the highest coverage.
Then, a number of candidate rules that extends A by one additional feature
predicate, {ai}, is generated. From this set, the candidate rule with the highest
estimated precision is selected and used to replace A. The process is then
repeated. At the end of every iteration, the algorithm checks if the current
candidate rule satisfies Equation 2.18. If so, the algorithm terminates and
returns the selected candidate rule. This approach leads to the fact that the
algorithm favours anchors with the lowest number of feature predicates, which
are usually the ones with the highest coverage.

Best Candidate Identification At the end of each candidate generation itera-
tion, the best candidate must be selected. Since computing the exact prob-
ability as described in Equation 2.18 is not feasible, the authors propose to
formulate the problem as an instance of a pure-exploration multi-armed ban-
dit problem [29]. Using an analogy to slot machines, each candidate rule A
can be seen as an arm that can be pulled, and each pull of the arm A is an
evaluation of 1f(x)=f(z) on a sample taken from the perturbation distribution
D(z|A). In this setting, the selection of the rule with the highest precision is
performed by using the KL-LUCB algorithm [29].

Candidate Precision Validation Once the rule with the highest precision is se-
lected by KL-LUCB, it must be evaluated if the rule can be chosen as an
anchor. If there is no statistical confidence that such a rule satisfies the pre-
cision criteria (the candidate exceeds the τ threshold), then the perturbation
space D(·|A) must be sampled once again. The process is repeated until it
can be stated with confidence that candidate A is an anchor.
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The previously described algorithm follows a bottom-up, greedy approach to
find the anchor for a given prediction. This strategy, as noted by the authors,
has two major limitations. The first issue is that, due to the greedy nature of
the approach, only one rule is selected at each step of the anchor construction.
Hence, any suboptimal choice performed by the algorithm is irreversible. Moreover,
the greedy algorithm does not directly address the computation of the coverage,
though a high coverage is to be expected since the bottom-up approach favours
anchors with a lower number of feature predicates.

To address these issues, the authors propose a new approach based on a beam
search algorithm which extends the greedy solution in two different ways. First,
after generating all possible candidate rules, the KL-LUCB algorithm is used to
select the B-best candidates, instead of a single one. Second, if the precision of the
given rule is above the τ threshold and the candidate’s coverage is the highest one
found so far, then the candidate is saved, and its coverage is used to prune the
search space in the next iterations. This optimization is based on the fact that, by
adding a new predicate to an existing rule, the coverage of a rule can’t increase. This
way, it is more likely that the algorithm returns an anchor with a higher coverage
than the one found using the greedy approach.

There are three main advantages associated with anchors. First, the fact that
the algorithm’s output is based on if-then rules makes the explanations easier to
interpret with respect to the results obtained from the explanation methods de-
scribed in the previous pages. Second, by providing information about the coverage
of the anchor and its precision, the algorithm is able to return a more faithful expla-
nation. Finally, the anchors approach is better suited to situations in which model
predictions are non-linear or complex in the perturbation space of the instance to
be explained.

The algorithm also presents several shortcomings. When the prediction to be
explained is close to a boundary of the black-box model’s decision function or
belongs to a rare class, the rule computed by Anchor may be overly specific, thus
too much complex and with a low coverage. In these situations, Ribeiro et al.
suggest that LIME’s explanation should be preferred, even though they do not
provide any information about the coverage of the output. Moreover, the setup of
the algorithm can become complicated, due to the huge number of hyperparameters
that must be configured. For instance, the task of identifying a realistic perturbation
distribution is particularly challenging, especially for some domains such as images.
Finally, there may be situations in which different anchors could be applied to the
same instance. While unlikely, this problem can be solved by alerting the user and
increasing the precision threshold.
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2.3.5 Other explanation algorithms
In the previous pages, a number of model-agnostic explanation algorithms have been
introduced. Several other methods have been proposed to provide insights about
why a prediction was made. These strategies were not included in the previous
analysis due to a lack of documentation on the subject, or because the proposed
solution does not align with the definition of model-agnostic explanation method.
This section briefly lists some of these other algorithms.

DeepLIFT

Deep Learning Important FeaTures, proposed by Shrikumar et al. [38], is a model-
dependent explanation method specifically designed to provide insights on the pre-
dictions computed by neural network models. It decomposes a prediction computed
by a neural network by back-propagating the contributions of all neurons in the
network to every feature of the input.

This approach is fundamentally different from other algorithms such as LIME
or Anchor, which can be referred to as perturbation-based approaches. In the lat-
ter, an explanation is produced by observing the impact that perturbations of the
original instance have on the model. This approach, the authors argue, is computa-
tionally inefficient, since each perturbation requires a separate forward propagation
through the network. Moreover, perturbation-based approaches may underestimate
the importance of features that have saturated their contribution to the output.

Another class of algorithms, to which DeepLIFT belongs, is referred to as back-
propagation-based approaches. The algorithms that follow this approach start from
the model’s output and assign importance scores to the neurons in the layer im-
mediately below. The process is repeated through the lower layers until the input
is reached. This strategy allows this type of algorithms to be computationally effi-
cient, since they only need a single backward pass to assign importance scores to
every input feature.

Most back-propagation-based algorithms use the gradient of the output to gen-
erate an explanation. Instead, DeepLIFT frames the problem of computing the
importance scores in terms of differences from a “reference activation”, where refer-
ence activation is the activation a neuron has when presented with the reference, or
neutral, input. This reference input is chosen by the user according to his domain-
specific knowledge.

TREPAN

TREPAN is an explanation algorithm which falls into the category of global surro-
gate models. Introduced by Craven and Shavlik, its goal is “to extract a comprehen-
sible, symbolic representations from trained neural networks” [18]. This is achieved
by querying the neural network as a black-box model (in the same way LIME or
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SHAP does) in order to build a decision tree which approximates the behaviour
of the original model. The decision trees that are generated using the TREPAN
algorithm preserve an accuracy comparable to the one obtained by the original
neural network, while providing a more comprehensible representation which can
be interpreted by humans.

The algorithm works in a similar way to other decision tree algorithms such as
CART [15] and C4.5 [33], with the target function being the concept represented
by the network. However, it exploits an oracle which is queried during the learning
process. The role of the oracle is to classify the instances that are presented as
queries. There are three main purposes why the oracle is used: first, to predict the
labels for the network’s training examples; second, to determine the splits for each
internal node of the tree; third, to determine the class distribution within a node
of the tree.

TREPAN can be considered as a model-agnostic algorithm, since it does not
place any requirement on the underlying model. The oracle acts like a black-box
model, and the decision tree is built based only on the inputs and outputs of the
oracle. This means that, though the algorithm was introduced to approximate the
behaviour of neural networks, it can also be applied to models trained using any
other machine learning algorithm.

Contrastive explanation method

The contrastive explanation method (CEM) by IBM’s researchers Dhurandhar et al.
[19] is yet another model-agnostic tool for generating model explanations. It stands
out from other methods such as LIME or SHAP because its focus is on justifying
the classification of an input by a black-box model based on which parts of the
input should be minimally and sufficiently present and, analogously, which parts
should be necessarily absent. Hence, its goal is to provide contrastive explanations
that align more closely to the way humans think.

A contrastive explanation tries to justify a prediction based on what is absent,
rather than what is present. As the authors of the algorithm state, this type of
explanation is more natural for humans and is commonly used in domains such as
health care and criminology. In these domains, a complete explanation is made of
two key notions:

Persistent positives The factors whose presence is minimally sufficient in justi-
fying the final classification;

Persistent negatives The factors whose absence is necessary in asserting the final
classification.

To generate this kind of explanation, CEM follows a three-steps approach: first,
it finds those features in the input that are minimally sufficient to yield the same
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classification (i.e. the pertinent positives); second, it search for the minimal amount
of features that should be absent from the input to prevent the classification result
from changing (i.e. the pertinent negatives); third, it exploits a state-of-the-art
convolutional autoencoder in order to obtain explanations that more closely align
to the reality.

2.4 Tools and frameworks for model interpretabil-
ity

In this chapter, a number of techniques to evaluate machine learning models’ per-
formances, along with various algorithms designed to provide human-friendly ex-
planations of the predictions performed by these models, have been introduced.
This last section provides an overview on some frameworks, libraries and tools that
have been proposed to further inspect the machine learning models. Most of these
frameworks exploit at least one of the techniques presented in this chapter, some-
times improving them to achieve better results. Some also provide additional tools
that can be useful to both data scientists, researchers, and non-experts.

2.4.1 IBM Watson OpenScale
IBM OpenScale is a commercial solution belonging to IBM’s Watson suite, intro-
duced with the goal of providing a platform that could be used by businesses to
operationalize their artificial intelligence systems and to extend their deployments
to the whole enterprise. It offers several tools that helps both data scientists and
managers to monitor and understand their model’s outcomes. OpenScale not only
provides an online application to navigate through the results by means of a graphi-
cal user interface, but it also offers an API which allows to programmatically access
the platform’s services. Among its features, the most relevant are:

• Tracking of several metrics, such as accuracy, recall, and precision, over time;

• Graphical representation of the tracked metrics;

• Storage of the predictions computed by a model, with the possibility to require
explanations for the single prediction;

• Based on the predictions performed by the model, detection of biases embed-
ded in the model;

• Mitigation of the previously identified biases.

In this section, the focus is solely on the first three features. The remaining two
will be further investigated in the chapter related to machine learning fairness.
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Metrics tracking

The platform allows the setup of a monitor that can be used to collect feedback data
from the user and to process those data in order to compute several metrics, such as
accuracy, AUC-ROC, and F-Score. The feedback data can be submitted to Open-
Scale from an external application through a dedicated RESTful API. Once the
number of feedbacks collected is sufficient to make a statistically sound estimation
of the model performance, the metrics are made available through a graphical user
interface. The provided interface shows how the model performs under the selected
metric in a given time frame. It is also possible to select a minimum threshold: if the
model performance under the selected metric is below the user defined threshold,
then an alert is thrown by the application. Finally, the application automatically
checks for new feedback data once every hour, and recomputes both the metrics
and the graphs.

Figure 2.10 presents an example of the previously described interface, starting
from a default demo data set provided by IBM. The image depicts a graph of the
AUC-ROC metric’s trend over the previous week. The teal line is used to represent
the tracked metric, while the red line depicts the user-defined threshold. On the
left, there are some additional suggestions to help interpreting the graph, as well as
further details related to the next planned evaluation. By clicking on a data point
of the graph, another view, which presents a more detailed view of the selected
point, is provided. A screenshot of this last view is presented in Figure 2.11.

Figure 2.10: Demo view of one of the graphs generated by OpenScale, which depicts
the auc-roc metric’s trend over the previous week
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Figure 2.11: A detailed view of the information provided by OpenScale for a single
data point

Prediction storage and explanation

In a similar way, OpenScale allows to monitor the predictions made by the machine
learning model (in Watson’s dialect, a prediction is referred to as a transaction). To
correctly query the model, it must be deployed on the IBM Cloud, using another
IBM’s service called Watson Machine Learning. Through the graphical interface
provided by this tool, it is possible to fill a form which allows to specify an instance
for which to obtain a prediction. Alternatively, Watson Machine Learning provides
a RESTful API that can be queried by an external program. The prediction is then
stored within the OpenScale platform, and it can be accessed through a unique
identifier to obtain an explanation for the given prediction.

Under the hood, OpenScale leverages LIME to provide an explanation for the
specified prediction. LIME’s results are then normalized in some way so that the
scores associated with each feature sum up to 100. The results are further enriched
by applying the Contrastive Explanation Method that was briefly presented in
the previous section. It is possible to access these explanation either through the
provided GUI, or through a RESTful API that returns the scores associated with
each input feature. If the explanation is accessed through the RESTful API, it is
also possible to disable the use of the CEM algorithm. In this situation, the results
will be computed using plain LIME.

Figure 2.12 and Figure 2.13 show an example of an explanation provided by
OpenScale, divided into two sections. Figure 2.12 shows the explanation generated
using the CEM algorithm, that is, the information about the identified pertinent
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positives and pertinent negatives. The second figure (Figure 2.13) depicts the ex-
planation computed using the LIME algorithm, along with the confidence of the
prediction. While most of the times OpenScale tries to redistribute the scores asso-
ciated with each item to match the percentage expressed by the confidence score,
this is not always possible (as in the situation presented as an example).

Figure 2.12: OpenScale view of the scores computed by CEM

Figure 2.13: OpenScale view of the scores computed by LIME
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2.4.2 Google What-If tool
The Google What-If Tool (WIT) is an interactive tool which allows the user to
investigate the model’s behaviour and performance through a visual interface [2].
WIT is an initiative of Google’s PAIR (People + IA Research) team. It has been
proposed as a tool to enable people to evaluate machine learning models without
the need to write complex code. Through WIT, a user can investigate the behaviour
of multiple models, compare them, and extract insights from them. The tool offers
a wide array of features:

Model comparison WIT allows to compare the performance metrics of different
models within the same workflow. To accomplish this task, WIT exploits the
ROC curve and the PR curve (where PR stands for Precision and Recall) to
compare the different models. Additionally, WIT allows to compare the con-
fusion matrices of the evaluated models. It also provides possibility to modify
the threshold used by the models to select a label based on the prediction
score and to see the difference in the results in real-time.

Inference results visualisation WIT leverages another component created by
PAIR called Facets Dive [3] to provide a custom visualisation tool which
offers the user the possibility to create plots where the instances of the dataset
are arranged based on the selected features. After the graph is created, the
user can select each instance to visualise all its attribute values. Another
functionality allows the user to group the instances in different bins. Through
this feature the user is able to analyse the model’s behaviour separately for
each of the generated groups (Figure 2.14).

Similar data points comparison By selecting a data point from the Facets plot,
the user can arrange all other points based on different similarity measures.

Data point variation Once an instance is selected, the user can modify the values
of each feature to see how the prediction changes. This allows the user to
intuitively experiment with different values and better understand how the
model behaves.

Nearest counterfactual comparison After the user has selected a specific data
point, WIT allows him to find the most similar instance across the dataset
for which a different label was predicted. By comparing similar instances that
were classified in opposite ways, the user is able to extract those features that
are crucial in predicting the class to which an instance belongs. Figure 2.15
shows an example of such comparison. On the bottom left of the screen, the
selected instances’ feature values are compared. On the right, the two data
points are visually represented through a scatter plot.
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Algorithmic fairness Finally, WIT is able to check if the model satisfies a number
of algorithmic fairness constraints such as statistical parity and equality of
opportunity (these metrics are covered in more detail in Chapter 3).

Figure 2.14: Google WIT’s scatter plots for different bins

Figure 2.15: Google WIT’s example of the selection of the nearest counterfactual
data point
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2.4.3 SHAP Framework

Authors Lundberg and Lee not only proposed a new theoretical foundation for
model explanation methods and a novel model-agnostic algorithm to explain black-
box models’ predictions [30], but they also provided a Python library which imple-
ments the SHAP algorithm and includes additional tools to gather insights from
a black-box model [4]. The library exploits SHAP to generate global explanations
by computing the SHAP values for every instance of the background data and by
combining the obtained results into a matrix of SHAP values. This matrix is then
used to interpret how the whole model works.

Although SHAP values describe what is the marginal contribution of each fea-
ture to the final output, the plot chosen by the authors to visualise each feature’s
contribution interprets SHAP’s results in a different manner. Each SHAP value is
represented as a “force” that pushes the prediction from the base value to the actual
model’s output. As Figure 2.16 shows, each feature either pushes the prediction to
a higher value (in which case the contribution is shown in red), or it pushes it to
a lower result (shown in blue). By summing up all the contributions, the difference
between the base and final output is obtained.

Figure 2.16: A force plot used to graphically represent an explanation based on
SHAP. [4]

Along with this new representation of the SHAP values, the authors exploit
SHAP to provide other plots that help to explain and evaluate the model. These
graphs are presented below.

Multiple explanations

Apart from explaining single predictions, SHAP provides a way to graphically vi-
sualise an explanation for multiple predictions at once. To do so, SHAP simply
takes the force plot previously presented, rotates it by 90 degrees, and stacks each
explanation horizontally. Figure 2.17a shows an example of this plot. Each position
on the x-axis represents the force plot for a single prediction, and the samples are
sorted by similarity. By using a notebook, it is possible to interactively navigate this
plot by selecting different criteria on which to base the clustering of the samples.

43



Interpretability

Feature importance

Starting from a matrix of SHAP values, the library computes the average of the
SHAP values for each feature in order to estimate which are the most important
features. The higher the average SHAP value, the more important the associated
feature is. Features are then sorted to provide the user an indication of which
features influence the model the most. Though the computation of the importance
score is different, the result is similar to the one that would be obtained through
the permutation feature importance measurement [16] [22], which is not covered in
this work. An example of this plot, with the features arranged in descending order
of importance, is shown in Figure 2.17b.

Summary plot

Similarly to feature importance, the summary plot provided by SHAP is used to
show which are the most relevant features in our data set. In addition, it offers
insights on the impact that each feature has on the instances of the input set.
Each point on the plot describes the SHAP value for a single instance and a single
feature. As Figure 2.17c shows, features are distinguished by plotting each point
on a different line based on the feature it refers to; the horizontal position of the
points is used to represent the SHAP value, and the colour is used for quantifying
the value associated with each point. When several points have the same SHAP
value, instead of overlapping, they pile up in order to better provide a sense of
density.

Dependence plot

SHAP dependence plots are used to show the impact that one feature has across
the whole data set. This is achieved by plotting, for each instance, its feature value
(on the x-axis) against its SHAP value (on the y-axis). The plot can be enriched
by using different colours to describe the value related to a second feature, thus
allowing to simultaneously analyse the relationship between two feature values and
the SHAP value for each instance. Figure 2.17d depicts an example of a dependence
plot. This results are similar to the ones that would be obtained by using partial
dependence plots.
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(a) SHAP multiple explanation plot (b) SHAP feature importance

(c) SHAP summary plot (d) SHAP dependence plot

Figure 2.17: Examples of different plots provided by SHAP library. [4]

2.4.4 Skater
Skater is an open-source Python library which enables model interpretation regard-
less of the specific model being analysed [5]. It offers a unified access to implementa-
tions of various algorithms for black-box model interpretability (in the terminology
used by Skater, these are referred to as post-hoc interpretations). The algorithms
contained in Skater are able to provide both local and global interpretations of the
model at hand. The main algorithms included in Skater are:

Feature importance It’s used to estimate the degree to which a prediction model
relies on a particular feature. To compute the importance score for a single
feature, Skater first perturbs the feature being evaluated, then it measures
the entropy in the change of the predictions. By measuring how the prediction
changes in function of the perturbation of the single feature, Skater is able to
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give an importance score to the evaluated feature.

Partial dependence plots Partial Dependence describes the marginal impact a
feature has on model’s predictions, while holding other features in the model
constant. It is used to highlight the effect of a feature on the predicted outcome
of a previously trained model. The algorithm is an adaptation of the algorithm
proposed by Hastie et al. [25].

LIME One of the ways Skater uses to provide local interpretations of a black-box
model is through the LIME algorithm. Under the hood, what Skater does
is to simply provide a wrapper for the original implementation of LIME as
proposed by authors Ribeiro et al. [6].

Tree surrogates This algorithm is inspired by the TREPAN algorithm proposed
by Craven [18]. Its goal is to generate a global surrogate model (in the form of
a decision tree) to provide a more interpretable approximation of a black-box
model. See the section on model-agnostic algorithms for more information.

DNN specific algorithms Skater allows access to two algorithms specific to Deep
Neural Networks which provide explanation capabilities for single predictions,
namely Layerwise Relevance Propagation and Integrated Gradient. These al-
gorithms both exploit a back-propagation-based approach that relies on the
gradient of the output to infer the weights to give to different features.

2.4.5 ELI5
ELI5 is a Python package which helps to debug machine learning classifiers and
explain their predictions. While the other packages presented in this section tries
to provide access to model-agnostic strategies to interpret black-box models, ELI5
is a framework which allows a uniform access to a variety of model-dependent algo-
rithms to compute model’s explanations. The package mostly focuses on producing
explanations for linear and tree-based models, but it also provides implementations
for some black-box algorithm.

There are two major high-level functions that comes with ELI5: one that is
used to compute the feature importance scores for the whole model, and a second
function used for estimating the weight that each feature value had on a given
prediction. These functions then dispatches the work to a concrete implementation
based on the type of model being evaluated. There is also a model-agnostic im-
plementation for the computation of feature importances. The provided algorithm
follows a permutation based approach, that is, it measures how predictions change
when a feature is not available. To do so, it replaces the target feature with random
noise which is drawn from the same distribution as the original feature values.
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ELI5 package also offers access to locally faithful explanations by exploiting the
LIME algorithm. As opposed to other tools such as OpenScale and Skater, ELI5
does not leverage the original implementation by Ribeiro et al. Instead, it provides
its own custom implementation of the authors’ algorithm. The major differences
between the two implementations are related to the different UI, the classifiers
supported by the two libraries, and the local surrogate model used to locally ap-
proximate the black-box model.
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Machine learning fairness

The previous chapter began by describing how the adoption of machine learning
techniques can improve existing businesses. It then focused on one of the main
issues that arises when trying to leverage machine learning to provide insights and
improve the efficiency of a given task: the requirement that individuals must be
able to understand and correctly interpret the output of a previously trained model.
While being able to evaluate the performance of a model and understand how it
works is crucial in the process of building a trustworthy artificial intelligent system,
there is another, more subtle problem, that in recent years has been addressed by
several researchers and that is strictly related to the ability to interpret a model’s
output: the need to make machine learning models accountable for the fairness of
their decisions.

The main reason why machine learning is becoming increasingly popular is
due to its high efficiency and effectiveness as a decision support tool. Machine
learning models can frequently outperform even experts’ judgement, leading to
more accurate and objective decisions. The problem is that, while the decisions of
an artificial intelligence system might be beneficial for the company, they might
also impact other people’s lives as a consequence. Machine learning is increasingly
being used to support processes such as school admission, loan approval, and job
offering. Hence, these algorithms are starting to affect every stage of the life of an
individual. In these use cases, a bias in the machine learning prediction can have a
huge impact on the groups of people to which this decision refers.

The reason why a machine learning model can be biased is grounded in the
fact that these systems are trained by examples. The whole process behind any
machine learning algorithm is to extract some general rule from a set of real world
examples by uncovering hidden patterns that are invisible even to an expert’s eye.
The extracted rules can then be used to make reasonable assumptions on previously
unseen cases. Thus, to successfully train a good machine learning model requires
high-quality evidences. However, when using historical data to model human be-
haviour, the provided examples often reflect the prejudices of the people that made
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these decisions in the first place. These biases then become the foundation from
where machine learning systems are trained. As a result, the predictions made by
these systems may favour a majority group over some minority. In other cases, there
may be some minority group for which there are not as many training data as for
the majority group. Moreover, the features that characterise these groups may be
less informative or less reliable. As a consequence, the trained model will be far
less accurate for the minority groups with respect to the accuracy measured for
the majority groups, which might result in unfair decisions from the model. In this
regard, a canonical example comes from the COMPAS algorithm, which is used
by several courts in the U.S. as a risk assessment tool to estimate the probability
of a person to commit another crime. Based on the algorithm prediction, judges
uses COMPAS to decide whether to release an offender. An analysis published by
ProPublica in 2016 demonstrated how the algorithm was unfairly judging black
offenders, which were wrongly labelled as high risk individuals at almost twice the
rate as white defendants [7].

Another problem related to fairness is that even a small bias, compounded over
time, might result in harmful decisions for a group of individuals. This is due to
the fact that the current model’s decisions influence future observations, which
will probably confirm the predictions made by the system and will provide fewer
examples that contradicts such predictions. An example that is frequently used to
clarify this last point is the following one [11]: suppose that the police department
of a city decides to use a machine learning system to predict which areas of the city
are at high risk for crime. Records of past crimes are used by the police to train
the model and, based on the system’s predictions, the department dispatches more
officers to the areas where crimes are most likely to occur. Such predictions might
also lower the officers’ threshold for stopping or arresting people. As a consequence,
a higher number of crimes will be prevented in those areas, which will provide a
validation for the model’s behaviour and might further intensify the patrols in those
parts of the city. In the meanwhile, the police might neglect other areas in which
crime rate is growing, which prevents new crimes from being unveiled and new
contradicting observations from being collected.

In the rest of this chapter, the first section reviews some of the most popu-
lar criteria proposed in the literature for measuring fairness. The second section
presents some algorithms that can be leveraged to mitigate the biases embedded
in a machine learning model. Finally, the third section reviews some of the tools
available to identify the presence of prejudice within a previously trained model,
as well as the frameworks that provide an implementation of the bias mitigation
algorithms presented in Section 3.2.
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3.1 Fairness definitions and relevant metrics
Algorithmic fairness refers to the capability of an artificial intelligent system to
guarantee the fairness of its decisions. For a system to be considered fair, its output
must be evaluated based on some fairness criteria. Hence, the first step to identify
the presence of prejudice within a machine learning model is to provide a definition
of what can be considered a fair outcome. By choosing how fairness is defined,
different metrics can then be used to objectively assess if the model behaves in an
unfair way. Unfortunately, due to the fact that fairness in machine learning is a
relatively new subject, there is no consensus in the literature over what fairness
exactly is and which criteria should be followed. Moreover, different terms have
been used in the literature to provide equivalent definitions of fairness. This section
outlines the main definitions that have been proposed, the relationships between
these criteria, and which are the strengths and weaknesses of each approach.

3.1.1 Fairness criteria
Defining a fairness criterion is a complex task due to the different ways biases can
arise. What can be considered fair in a specific context might be unfair in another
one. Furthermore, different people have different sensibilities about what is fair and
what is not. Generally speaking, fairness can be defined in two ways:

Individual fairness According to this definition, similar individuals should be
treated similarly.

Group fairness The population should be split into several groups based on some
sensitive attribute. After the split, a statistical measure has to be computed
for each group. For group fairness to be satisfied, the selected measure should
be equal across all groups.

Furthermore, group fairness can be interpreted in opposite ways, based of two
different worldviews [41] [23]:

What You See Is What You Get According to this worldview, the predicted
result reflects the ability of each individual to perform a task.

We’re All Equal This worldview states that every group is identical with respect
to the task at hand. Hence, if there is a difference in the predicted outcomes
of two groups, this is due to a bias that influences the way the outcome is
computed.

Based on the chosen interpretation, different definitions can be proposed. In
this section, three different criteria for evaluating fairness are presented, along with
some variants obtained by relaxing the original definitions. While giving the most
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general formulation, the main discussion revolves around the special case of a binary
classifier with a single sensitive attribute. Furthermore, a number of variables are
used throughout the section:

• B denotes the sensitive feature. The values that can be assigned to this feature
are split into two group a and b. a refers to the privileged group, that is, the
group for which the classifier predicts a higher rate of favourable outcomes.
Instead, b is used to describe the unprivileged group that might be harmed
by an unfair classifier.

• R is the score based on which the classifier makes a prediction C.

• Y describes the target variable that the model tries to predict.

To better understand how some of these criteria works, an example is used
to further explain some of the concepts presented. The context is the one of a
company that wants to use a binary classifier as a support tool to predict whether
an applicant should be hired for a job position. In this context, B refers to some
sensitive attribute (e.g. gender or race), C is the prediction made by the classifier
(hired / not hired), and Y is used to denote if the applicant is truly capable of the
position.

Fairness through unawareness

A naive approach to solving the fairness issue is to simply ignore the sensitive
attributes. The idea is based on the fact that, by removing the attribute that
carries the prejudice, the resulting model would be devoid of biases. This criteria
aligns with the notion of disparate treatment available in legal literature, which
states that sensitive attributes should not be used.

While this approach might seem reasonable, most of the times its effects on the
biased classifier are null, if not harmful. Indeed, this strategy ignores the presence
of small statistical correlations between the removed feature and other available
attributes. When many of such features are available in the data set, these attributes
can act as a proxy for the ignored feature, which makes the removal of the sensitive
attribute useless.

Independence

Independence is one of the most widely used criterion for assessing fairness. Variants
of this concept include statistical parity, group fairness, demographic parity, and
disparate impact. Given two variables B and C, this criterion is satisfied if B is
independent of C (B⊥C). In the case of binary classification, this formulation can
be expressed as:

P{C = 1|B = a} = P{C = 1|B = b} (3.1)
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for each group a and b. If we consider 1 as the positive outcome, this condition
means that the percentage of positive outcomes for both groups is the same, hence
there is no privileged group.

This notion can be relaxed by accepting the presence of a disparity between the
groups, as long as this difference is relatively small. Hence, independence can be
expressed in two different ways, which are more or less equivalent:

Disparate impact The disparity can be expressed as the ratio of rate of favourable
outcome for the unprivileged group to that of the privileged group. By con-
sidering a as the privileged group and b as the unprivileged one:

P{C = 1|B = b}
P{C = 1|B = a}

≥ 1− Ô (3.2)

where an acceptable value for Ô, some authors argue [21], should equal to 0.2.
With this setting, the ratio is compliant with the 80%-rule supported by the
U.S. Equal Employment Opportunity Commission [13].

Statistical parity difference Otherwise, independence can be measured in terms
of the difference of the rate of favourable outcomes received by the unprivi-
leged group to the privileged group:

|P{C = 1|B = b} − P{C = 1|B = a}| ≤ Ô (3.3)

The reason why independence is frequently used in the literature is because it
is one of the few definitions that has legal support. The already cited 80%-rule, or
four-fifth rule, specified in the U.S. Equal Employment Opportunity Commission
guidelines, prescribes that a selection rate for any group (classified by race, orienta-
tion or ethnicity) that is less than four-fifths of that for the group with the highest
rate constitutes evidence of disparate impact, that is, discriminatory effects on a
protected group.

One of the main drawbacks is that independence doesn’t take into account
any possible correlation between the sensitive feature B and the actual outcome
Y . Furthermore, by applying independence alone there is a risk of the company
being guilty of laziness: if a company diligently hires applicants belonging to group
a, then randomly selects other applicants from group b at the same rate as a,
independence would still be satisfied, but there would be a disproportion in the
number of qualified applicants between the two groups. As a consequence, the
feedback data that will be collected in the future will only serve as a validation
for the prejudice rightfulness. As Barocas et al. note [11], this might happen even
without the company being consciously negligent. Indeed, this behaviour might
arise from the fact that the company has not enough training data related to group
b, which causes the machine learning model to be less accurate, hence, more prone
to errors in selecting the candidates.
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Separation

In many occasions, a difference in the way two groups are treated might be justified
by a business necessity. This happens when there is a correlation between the
sensitive feature and the target variable. The separation criterion, also known as
equalized odds, was first proposed in H, Price, Srebro (2016) [24] and Zafar, Valera,
Rodriguez, Gummadi (2016) [14]. This approach seeks to acknowledge the existence
and rightfulness of this correlation to the extent that is justified by the target
variable. Given the three variables (B, C, Y ), the separation criterion is satisfied if
B is independent of C conditional on Y (B⊥C | Y ). If C is a binary classifier, then
the criterion can be formulated as:

P{C = 1 | Y = 1, B = a} = P{C = 1 | Y = 1, B = b} ∧
P{C = 1 | Y = 0, B = a} = P{C = 1 | Y = 0, B = b}

(3.4)

where P{C = 1 | Y = 1} represents the true positive rate of the classifier, and
P{C = 1 | Y = 0} represents its false positive rate. Thus, the goal of the separation
criterion is for both groups to obtain the same false positive rate and false negative
rate.

In many situations, the two rates might have different weights. Hence, it might
be more interesting to relax the condition expressed in Equation 3.4 to account
only for the true positive rate or vice versa. Equality of opportunity is the name
that is used when referring to the variant of the separation criterion that considers
only the true positive rate:

P{C = 1 | Y = 1, B = a} = P{C = 1 | Y = 1, B = b} (3.5)

This approach overcomes the main limitation of the independence criterion,
namely, the issue that arises when only one of the considered groups is evaluated
properly. On the other hand, separation might not help closing the gap between
the two groups in the long run. Using the same example as before, there might be a
disproportionate amount of qualified individuals belonging to group a with respect
to the applicants in group b. In this situation, the separation criterion might justify
the higher acceptance rate experienced by group a. If the offer refers to a well-paid
position, the disproportionate choice will impact the future perspectives of the two
groups, which will increase the pre-existing gap in the long term.

Sufficiency

The sufficiency criterion, also referred to as predictive rate parity, is based on the
idea that the sensitive feature might be already subsumed in the score used for pre-
dicting the target label. To put it differently, given three random variables (B, C, Y ),
the sufficiency criterion states that, if C is available, then B is not needed in order
to compute the score of Y . More formally, variable C is sufficient for B if Y⊥B |C.
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In a binary setting where Y ∈ {0, 1}, a variable C is deemed as sufficient for B if,
for all groups a, b ∈ B, the following condition is satisfied:

P{Y = 1 | C = y, B = a} = P{Y = 1 | C = y, B = b}, ∀y ∈ {0, 1} (3.6)

In other words, the sufficiency criterion requires that the positive and negative
predictive values should be equal across all groups.

Using sufficiency as a fairness definition guarantees that, if the applicant is
hired, than his success probability will be the same independently of the group
it belongs to. Thus, it is able to overcome the laziness issue. However, sufficiency
shares with the separation criterion the limitation that it does not help to close the
gaps between the privileged and unprivileged groups.

3.1.2 Relationships between different criteria
While it can be useful to consider different criteria when evaluating the presence
of bias in an artificial intelligence system, these cannot be used simultaneously
as hard constraint. This limitation arise from the fact that, with the exception
of degenerate cases, the three criteria of independence, separation, and sufficiency
are mutually exclusive. As a consequence, fairness can be achieved by finding an
optimal trade-off between these three criteria.

Independence vs Sufficiency

Let C be the sensitive attribute and Y the target variable, where C and Y are not
independent (C /⊥ Y ). This assumption means that, given two groups a and b, one
of the two groups has a positive outcome rate higher than the other one. In this
situation, either separation holds or sufficiency does, but not both. As a proof:

if C /⊥ Y and C⊥Y |B =⇒ C /⊥ B

Independence vs Separation

Let C be the sensitive attribute and Y the target variable, where C and Y are not
independent (C /⊥ Y ) and Y is a binary variable. If B /⊥ Y is also satisfied, then
independence and separation cannot both hold. As a proof:

if B⊥C and B⊥C | Y =⇒ C⊥Y or B⊥Y

Separation vs Sufficiency

Assume all events in the joint distribution of (B, C, Y ) have positive probability. If
C is dependent of Y , either separation holds or sufficiency does but not both. As a
proof:

if C⊥B | Y and C⊥Y |B =⇒ C⊥(Y, B) =⇒ C⊥Y
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3.2 Bias mitigation algorithms
The need to achieve algorithmic fairness led many researchers to propose several
strategies to cope with biases embedded in a machine learning model. These algo-
rithms try to strike a balance between preserving the accuracy of the original model
and enforcing the fairness in the model’s predictions. The way they work mainly
depends on two factors: the criterion selected for measuring the fairness, and the
step in the workflow of a machine learning process in which they are applied. This
section’s structure mirrors this latter aspect and, for each step in a machine learn-
ing’s workflow, presents a selection of the algorithms that has been proposed to
pursue algorithmic fairness.

3.2.1 Pre-processing
Let X be a record in a training set D, A the set of non-sensitive features and B
the sensitive feature in a training data set. The goal pre-processing algorithms is
to learn a new representation Z which preserves the information correlated to the
A features but ignores the information of B. This new representation will then be
used as a training data set based on which a new model will be trained. As a result,
the output model will be characterised by an accuracy comparable to the one that
would be obtained by a model trained using also feature B, but its predictions will
preserve the fairness criteria on which the selected algorithm is based.

Reweighing

The reweighing algorithm, first proposed by Kamiran and Calders [27], is a pre-
processing algorithm which weights the examples in each (group, label) pair differ-
ently to ensure fairness before classification. In this algorithm, the chosen fairness
criterion is the independence one. For instance, suppose a record X belongs to the
unprivileged group b, that is, X(B) = b. If the target label is negative (X(C) = −),
then a lower weight will be given to the sample. If the record’s target label is positive
(X(C) = +), then it will receive a higher weight. Vice versa, a record’s belonging
to the privileged group a will get lower weights when X(C) = + with respect to
the situation when X(C) = −.

Let D be the training dataset, B ∈ {a, b} the sensitive attribute, where a is the
privileged group and b the unprivileged group, and C ∈ {−, +} is the target label.
By using the independence criterion, the fact that D is unbiased means that B and
C are statistically independent (B⊥C). In such situation, the expected probability
that a record X belongs to group b and is classified as X(C) = + would be:

Pexp{B = b, C = +} = |{X ∈ D | X(B) = b}|
|D|

· |{X ∈ D | X(C) = +}|
|D|

(3.7)
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If we drop the hypothesis B⊥C, which is the case that is observed in the real world,
then the observed probability in D is:

Pobs{B = b, C = +} = |{X ∈ D | X(B) = b, X(C) = +}|
|D|

(3.8)

If the expected probability is higher than the observed probability value, it shows
that there is a bias towards group b. Therefore, a set of weights W , one for each
object X, will be computed to compensate group b for the bias. The weights are
computed as follows:

W (X) = Pexp{B = b, C = +}
Pobs{B = b, C = +} . (3.9)

Through this process, the representation Z is learned by adding the weights W to
set D. This new set is unbiased and can be used to train a fair classifier.

Disparate impact remover

As the name implies, this strategy leverages the disparate impact measure, also
known as independence, to learn a fair representation Z. More precisely, the goal
of the disparate impact remover algorithm is to increase group fairness while pre-
serving rank-ordering within groups by editing feature values. The algorithm was
proposed by Feldman et al. in 2014 [21].

To describe the disparate impact remover algorithm, the following definitions
must be given:

• D is the training dataset, A denotes a single numerical attribute belonging to
the set of non-sensitive features, B is the sensitive attribute, and C represents
the predicted label;

• Ab = P{A | B = b} describes the marginal distribution on A conditioned on
B = b;

• Fb : Ab → [0,1] is the cumulative distribution function for a ∈ Ax. Fx is the
function used to rank the values of A;

• F −1
b : [0,1] → Ab is the quantile function associated to Fx. For instance,

F −1
b (1/2) is used to denote the values a ∈ Ab such that P{A ≥ a | B = b};

• Â is called the “repaired” version of A, and Z is therefore the “repaired”
version of D. Z is said to strongly preserve rank if, for any a ∈ Ab and b ∈ B,
its “repaired” counterpart â ∈ Âb has Fb(a) = Fb(â).

• F −1
M (u) = medianb∈BF −1

b (u) describes the median distribution M in terms of
the quantile function F −1

b
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The algorithm works by replacing A with Â, where â ∈ Âb are computed as follows:

â = F −1
M (Fb(a)), ∀a ∈ Ab (3.10)

As a result, the algorithm works by replacing the non-sensitive attribute(s) A with
its “repaired” version Â while maintaining both the sensitive feature B and the
class C. The replacement is structured in such a way that, for any group b ∈ B, the
ranking in Âb is the same as in Ab, but the “repaired” data set Z is fair. Moreover,
by preserving the ranking, the resulting model will still be able to positively label
the most promising records.

Optimized pre-processing

One last pre-processing strategy that is presented is the optimized pre-processing
algorithm proposed by Calmon et al. [17]. This algorithm works by learning a
probabilistic transformation which alters both the non-sensitive features and the
label based on three different constraints. As with the disparate impact remover
algorithm, optimized pre-processing retain the sensitive feature as-is.

Let A represent one or more non-sensitive attributes. B represents the sensitive
features, and C ∈ {0,1} is a binary target label. The goal of this algorithm is to
find a mapping pÂ,Ĉ | A,B,C that satisfies two properties:

• Starting from data set D, the mapping must able to obtain a new data set
Z which can be used to train a new model. The new data set is created by
replacing the pair {A, C} with a new pair {Â, Ĉ} for each record. The new
pair is computed by applying pÂ,Ĉ | A,B,C to the triplet (A, B, C).

• The mapping should be applicable independently of the data, as soon as this
data can be fed to the machine learning model. This means that pÂ,Ĉ | A,B,C
can also be applied to the testing set. Since in this setting the label {C} is not
available and {Ĉ} may not be needed, a reduced mapping function pÂ | A,B
can be used.

Additionally, the learned transformation must comply with the following constraints:

Discrimination control The mapping should limit the dependence of the out-
come C to the sensitive feature B. As in the previous algorithms, the criterion
used for estimating the fairness of the classifier is the independence one. The
authors propose two alternative formulations of this constraint. The first one
requires that the rate of positive outcomes for a given group should be similar
to the rate of positive outcomes for the whole data set D:

J(P{Ĉ = c | B = b},P{C = c}) ≤ Ôc,b

∀b ∈ B, c ∈ {0,1}
(3.11)
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where J is used to denote a distance function. A second formulation constrains
the probability of Ĉ conditional on B to be similar for any pair of values of
D:

J(P{Ĉ = c | B = b1},P{Ĉ = c | B = b2}) ≤ Ôc,b1,b2

∀b1, b2 ∈ B, c ∈ {0,1}
(3.12)

To better align with the 80%-rule, the authors suggest the following function
to compute the distance:

J(p, q) = |p
q
− 1| (3.13)

Distortion control The mapping function should satisfy some distortion con-
straints to avoid large alterations of the original feature values which might
distort the meaning of those attributes. An example given by the authors,
in the context of a loan approval decision, is the mapping of a low credit
score to a high credit score. Given a distortion metric δ : (A × C)2 → R,
where δ(a, c, a, c) = 0 for all a, c ∈ A× C, the conditional expectation of the
distortion can be formulated as:

E[δ((a, c), (Â, Ĉ)) | A = a, B = b, C = c] ≤ la,b,c

∀a, b, c ∈ A×B × C
(3.14)

where l is the desired level of control.

Utility preservation Finally, the distribution (Â, Ĉ) should be statistically closed
to the distribution of (A, C) to ensure the closeness of the behaviour between
the models trained with the original data set D and the fair data set Z.
Given a dissimilarity measure ∆, the dissimilarity between two probability
distributions (∆(P(Â, Ĉ),P(A, C))) must be as small as possible.

By combining the constraints previously defined, the optimized pre-processing al-
gorithm can be formulated as an optimization problem in which the goal is to
minimize the dissimilarity measure while also satisfying the other two constraints.
The result is the transformation pÂ,Ĉ | A,B,C .

min
pÂ,Ĉ | A,B,C

∆(P(Â, Ĉ),P(A, C))

subject to J(P{Ĉ = c | B = b},P{C = c}) ≤ Ôc,b

E[δ((a, c), (Â, Ĉ)) | A = a, B = b, C = c] ≤ la,b,c

∀a, b, c ∈ A×B × C

(3.15)
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3.2.2 In-processing
The class of the in-processing algorithms includes those approaches that try to
enforce algorithmic fairness by changing the learning strategy of the model. These
algorithms usually work by adding a regularisation term or another constraint to
the existing optimisation function, while leaving the training data as-is.

Adversarial debiasing

Adversarial debiasing is an in-processing technique proposed by Zhang, Lemoine,
and Mitchell [42]. This algorithm learns a classifier that, while maximising the pre-
diction accuracy, it simultaneously reduces an adversary’s ability to determine the
sensitive attribute from the predictions of the trained model. It has the additional
benefit that it is not restricted to the independence criterion and can be adapted
to satisfy other fairness definitions.

To describe how the algorithm works, a neural network will be used as an
example even though the algorithm can be classified as model-agnostic. Let X be
the input based on which the model will be trained, C the output variable, and B
the sensitive feature. A classifier P is characterised by a function Ĉ = f(X) and
is usually given access to the sensitive variable B. In the description that follows,
Ĉ is referred to as the output layer of the network. Let’s assume that the model
is trained by modifying the weight W to minimise some loss function LP (ĉ, c),
and that a gradient-based method is used to accomplish this task. The output
layer Ŷ is used as an input to another model A called the adversary, which goal
is to predict the sensitive feature B based on another loss function LA(b̂, b) and a
different set of weights U . Additionally, the adversary may have other inputs, based
on the fairness criterion that the algorithm is trying to enforce. Figure 3.1 depicts
the context described above. The goal of the Adversarial debiasing algorithm is to
update the set of weights W in order to protect the sensitive attribute from being
discovered by the adversary.

Figure 3.1: The architecture of the adversarial network, as described by the adver-
sarial debiasing algorithm.

Adversarial debiasing works by enriching the machine learning algorithm from
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which the model is trained with a number of additional steps. At each training time
step, the weights U are updated based on the output Ĉ of the network P and LA is
minimised according to the gradient ∇ULA. Next, W is modified by applying the
following expression:

W = ∇WLP − proj∇W LA
∇WLP − α∇WLA (3.16)

where α is an hyperparameter that can be tuned by the user. The first term of
the expression ∇WLP is the gradient that is usually applied to compute W , the
second term proj∇W LA

∇WLP prevents Ĉ from helping the adversary A to lower
its loss function, and the last term α∇WLA introduces a noise that increases the
adversary’s loss.

Disparate mistreatment remover

Disparate mistreatment remover, proposed by Zafar et al. [14], is an in-processing
algorithm which goal is to train a fair model which satisfies the separation criterion
(Equation 3.4) by adding a number of constraints to the optimisation function used
to minimise the loss. In this paper, the authors use the term disparate mistreatment
when referring to the separation fairness definition.

The algorithm proposed by Zafar et al. focuses on decision boundary-based
classifiers such as logistic regression and support vector machines. Furthermore,
the following definitions must be provided:

• A ∈ Rd is the set of non-sensitive attributes

• Y ∈ {−1,1} refers to the binary class label, and C ∈ {−1,1} is the predicted
label

• θ describes the parameters to learn

• L(θ) denotes the convex loss function from where classifiers usually learn their
decision boundary

• dθ(A) refers to the signed distance from B to the decision boundary

• fθ(A) is the classifier function. This function is equal to 1 if dθ(A) ≥ 0,
otherwise it is −1.

• B ∈ {0,1} describes the sensitive attribute

In the paper, the fairness formulation used to describe the disparate mistreat-
ment is the relaxed condition expressed in Equation 3.5, that is, the equality of
opportunity. In this setting, such definition can be reformulated as

P{C /= Y | B = 0, Y = −1} = P{C /= Y | B = 1, Y = −1} (3.17)
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to denote the false positive rate. By incorporating this condition into the classifier
formulation, the optimisation function can be written as:

min L(θ)
subject to P{C /= Y | B = 0} − P{C /= Y | B = 1} ≤ Ô

P{C /= Y | B = 0} − P{C /= Y | B = 1} ≥ −Ô

(3.18)

where Ô ∈ R+ is a tunable parameter that defines how fair the final classifier can
be. The smaller Ô is, the more fair the decision boundary will be. The additional
constraints define a fair boundary that is used to limit the optimal decision bound-
ary.

As the authors note, the condition expressed in Equation 3.17 is, in general, non
convex, which makes the task of solving Equation 3.18 intractable. To overcome this
issue, Zafar et al. propose to substitute Equation 3.17 with a tractable proxy which
relaxes the constraints. The chosen proxy is the covariance between the sensitive
attributes B and the signed distance between the feature vector A of misclassified
users and the decision boundary of the classifier.

Cov(B, gθ(Y, A)) = E[(B − B̄)(gθ(Y, A)− ḡθ(Y, A))]

≈ 1
N

Ø
A,B,Y ∈D

(B − B̄)gθ(Y, A) (3.19)

where gθ(Y, A) = min(0, 1−Y
2 Y dθ(A)). The term E[B− B̄] ḡθ(Y, A) is cancelled out

since E[B − B̄] = 0. With this proxy, Equation 3.18 can be rewritten as follows:

min L(θ)

subject to 1
N

Ø
A,B,Y ∈D

(B − B̄)gθ(Y, A) ≤ c

1
N

Ø
A,B,Y ∈D

(B − B̄)gθ(Y, A) ≥ −c

(3.20)

where c ∈ R+ is a covariance threshold that the user can set to control how adherent
to the separation criterion the boundary should be.

3.2.3 Post-processing
Post-processing algorithms try to satisfy fairness constraints by slightly modify-
ing the output of a model, without the need to change the training data and/or
to retrain the model. These algorithms are usually used when the two previous
approaches are not viable because the training data set or the machine learning
algorithm are not accessible. Through these strategies, the idea is to correct the
threshold used to select the proper output for each group in order to enforce some
fairness criterion.
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Reject option classification

Reject option classification is a post-processing technique proposed by Kamiran et
al. [28] that gives favourable outcomes to unprivileged groups and unfavourable
outcomes to privileged groups in a confidence region around the decision boundary
with the highest uncertainty. The algorithm determines the fairness of the outcome
by applying the independence definition (Equation 3.1 ).

Let A be the set of non-sensitive attributes and B the set of sensitive features.
C ∈ {0,1} describes the target label, where 0 is the negative outcome and 1 is the
positive one. D = {Ai, Bi, Ci}Ni=1 refers to a data set of N samples, f : (A, B) →
{0,1} describes the classifier which output must be transformed according to the
independence criterion, and P{1 | A, B} is the posterior probability computed by
f for a given sample.

When the probability P{1 | A, B} is closer to 1 or 0 it means that the classi-
fier has a higher degree of certainty that the record should be classified positively
or negatively. As P{1 | A, B} gets closer to 0.5, then the classification outcome
becomes more uncertain. In a situation like the one previously described, we can
define a critical region such that max[P{1 | A, B}, 1 − P{1 | A, B}] ≤ θ, where
0.5 ≤ θ ≤ 1 describes how large the critical region is. The closer θ is to 0.5, the
smaller the critical region is. The instances that fall into this region are considered
to be ambiguous and subject to biases, which justifies the introduction of what is
called a reject option. This option is introduced to compensate for the biases of
the model and requires that all instances belonging to the unprivileged group must
be classified positively, and all instances belonging to the privileged group have
to be labelled negatively. On the contrary, the predictions outside of the critical
region are considered to be free from prejudice and are classified coherently with
the model’s output.

Equalized odds post-processing

Equalized odds post-processing is a post-processing technique proposed by Hardt et
al. [24] which tries to satisfy the separation definition of fairness (in Hardt’s work,
this criterion is called equalized odds). Its task is to solve a linear program to find
the probabilities with which to change the label predicted from a classifier’s output
score in order to optimise the equalized odds.

Before presenting the algorithm, the following definitions must be given:

• A ∈ {0, 1} is a binary sensitive attribute, X the set of non-sensitive features,
Y ∈ {0, 1} the true target, and Ŷ ∈ {0, 1} the label predicted by the classifier;

• R(A, X) ∈ R denotes the score function based on which the label Ŷ is selected;

• Ỹ is a label derived from A and R in such a way that Ỹ is independent of X
conditional on (R, A), that is, Ỹ⊥X | R, A;
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• L(ŷ, y) ∈ R is the loss function used to estimate the “goodness” of the clas-
sifier, and E L(ŷ, y) is the expected loss to be minimised;

• γa(Ŷ ) = (P{Ŷ = 1 | Y = 0, A = a},P{Ŷ = 1 | Y = 1, A = a}) is a
pair composed by the false positive rate and true positive rate within the
demographic satisfying A = a. For the equalized odds definition to be satisfied,
γ0(Ŷ ) = γ1(Ŷ ). The equality of opportunity criterion (Equation 3.5) can also
be satisfied. In this case, γ0(Ŷ ) and γ1(Ŷ ) only need to agree in the second
component (therefore, the true positive rate is the same for both groups);

• Pa(Ŷ ) = convhull{(0,0), γa(Ŷ ), γa(1− Ŷ ), (1,1)} is a two-dimensional convex
polytope defined as a convex hull of four vertices. Ỹ can be derived if and
only if γa(Ỹ ) ∈ Pa(Ŷ ),∀a ∈ {0,1}.

The linear optimisation problem can be formulated as follows:

min
Ỹ

E L(Ỹ , Y )

subject to γ0(Ỹ ) = γ1(Ỹ )
∀a ∈ {0,1} : γa(Ỹ ) ∈ Pa(Ŷ )

(3.21)

The task performed by the equalized odds post-processing technique can be rep-
resented graphically as shown in Figure 3.2. If the ROC curve is printed indepen-
dently for the instances with A = 0 and A = 1, the different behaviour of the
model is clear. The optimal Ỹ that satisfies the equalized odds criterion (figure on
the left) is found at the intersection of the two curves, while to satisfy the equality
of opportunity definition (figure on the right) it is enough to constrain the true
positive rates for the two classes to be the same. Thus, the selected points simply
need to be on the same horizontal line.

3.2.4 How to choose a bias mitigation algorithm
In this section, a number of different algorithms for bias mitigation have been
presented. This list is not intended to be exhaustive, but to provide an overview
of some of the techniques that have been proposed by researchers in the last years.
The number of algorithms that tries to find an optimal solution for the machine
learning fairness problem grows every year, and no algorithm is clearly superior to
the others. This is due to a multitude of reasons.

As previously described, the choice of the algorithm is constrained by the chosen
definition of fairness, which may vary from case to case. Moreover, different criteria
can’t be pursued simultaneously and each algorithm mainly focuses on a single
definition. For instance, the reweighing algorithm is based on the independence
criterion, while the disparate mistreatment remover technique uses the separation
definition.
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Figure 3.2: A graphical interpretation of the idea behind the equalized odds post-
processing technique. On the left, the label that satisfies the equalized odds defini-
tion is selected. On the right, the chosen label is the one that satisfies the equality
of opportunity criterion [24]

Another factor that influences the decision is the part of the machine learning
pipeline in which the user is allowed to intervene. As a rule of thumb, the earlier
the algorithms are applied, the most flexible and effective the intervention will be.
If it is possible to alter the training data, then pre-processing techniques should be
preferred. Otherwise, if the user is allowed to change the learning algorithm, but
can’t modify the training data, then he might adopt an in-processing technique. If
none of these strategies is viable, the only possibility is to work on the posterior
probability produced by the model through a post-processing algorithm.

Similarly, the selection of the algorithm depends on the requirements of the
algorithm itself. For instance, the equalized odds post-processing technique, despite
being a post-processing strategy, requires access to the sensitive feature in order to
compute the right label. Other algorithms have some limitations in terms of the
types of classifier they can be applied to. Some algorithms, such as the reject option
classification one, are deterministic, while others have a randomised component
(e.g. disparate mistreatment remover).

Finally, when multiple algorithms can be applied to the problem at hand, all of
them should be tested, to see how they perform on the specific data set available
for the task.
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3.3 Tools and frameworks for ML fairness
The application of fairness criteria to machine learning models is a topic that has
received a lot of attention in recent years, thanks to a greater awareness about the
risks that unfair machine learning models might pose to specific social groups. Not
only has this popularity led to a growth in the number of scientific publications
related to fairness, but it also encouraged the introduction of a number of tools
which goal is to monitor the behaviour of a model to alert the user in case of unfair
treatment. Moreover, some of these solutions also provide an implementation for
the algorithms previously described. This section provides an overview of the main
tools available to audit a model for biases and mitigate the prejudice found in an
artificial intelligence system.

3.3.1 Model interpretability as a bias detection tool
In Chapter 2, various solutions for interpreting a model’s prediction and under-
standing its behaviour have been introduced. These techniques can be leveraged
to provide insights on which features contributed the most to a prediction. If a
sensitive feature had a huge impact on the output of the model, then interpretabil-
ity algorithms should be able to expose the prejudice and present it to the user.
Additionally, these algorithms can be used to check the absence of prejudice after
a bias mitigation algorithm has been applied to the training data or to the learn-
ing algorithm. If the bias mitigation technique has been successful at removing the
prejudice, then the weight given to the sensitive feature should be close to zero.

An example of the application of an interpretability algorithm as a tool for
detecting unfair behaviours is presented in Figure 3.3. The field of application is
a loan approval process in which, based on the customer information, a manager
must decide if a loan application should be accepted. This problem will be further
investigated in the next chapter, but a small description is provided to understand
the context of the example. The positive outcome (the application is accepted) is
0, while 1 means that the application should be rejected. On the left side of the
image, the probabilities for each class label are shown. In the right box, the details
about the customer are listed, and the middle box depicts LIME’s score estimation
for the given record. The feature of interest is “NAZIONALITA”, which refers to
the nationality of the customer. Figure 3.3a shows how the nationality of the first
customer (MA - Morocco) negatively influenced the model’s prediction, ultimately
leading to a negative prediction. On the contrary, the classifier assigned a positive
label to the second customer even though the two records are very similar (Figure
3.3b). LIME’s scores provide an estimate of the influence that each feature had on
the final output, and show how the factor that has influenced the change in the
prediction the most is the fact that the customer is italian (IT - Italy). Thus, by
comparing LIME’s output for both customers, it has been possible to expose the
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bias of the model towards some nationalities.

(a) LIME’s output for a moroccan customer

(b) LIME’s output for an italian customer

Figure 3.3: A comparison between two LIME’s outputs which reveals a bias in the
model.

3.3.2 IBM AI Fairness 360
At the time of writing, IBM AI Fairness 360 (AIF360) is perhaps the biggest open
source toolkit available for machine learning fairness. Its goal is to “examine, report,
and mitigate discrimination and bias in machine learning models throughout the
AI application lifecycle” [8]. It is an extensible framework capable of unifying most
of the metrics and algorithms presented in this chapter. It also includes a bias
explanation feature that gives further insights about the computed metrics. The
toolkit is available as a Python library [9], and its architecture is further analysed
in the accompanying paper [12].

AIF360 provides a wide variety of metrics to support the process of inspecting
the model for unfair behaviour. The featured measurement functions ranges from
traditional performance evaluation metrics such as precision and recall, to bias
detection metrics such as disparate impact (Equation 3.2) and equal opportunity
difference (Equation 3.5). It also provides a number of functions for computing the
distance between different samples.

The toolkit introduced by IBM provides an implementation of most of the al-
gorithms presented in Section 3.2. The framework created by the authors, based
on a custom Dataset class, resembles the fit-transform-predict paradigm typical of
other popular libraries such as scikit-learn, which simplifies its adoption by the
data science community. Moreover, the standardised approach to bias mitigation
allows the user to test several algorithms in a limited amount of time, which is
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crucial since the choice of a bias mitigation algorithm is mostly based on a “trial
and error” strategy. AIF360 has been designed to be easily extensible by external
contributors, which provides a way for researchers to quickly implement their own
bias mitigation algorithms by using AIF360 as their base framework.

Figure 3.4: The interactive experience provided by IBM AI Fairness 360. It offers
an introduction to the topics of algorithmic fairness and bias mitigation.

Along with the toolkit, the researchers behind AIF360 also provided an interac-
tive web experience which introduces the user to the notions of algorithmic fairness,
bias detection and bias mitigation. This interactive experience provides a simple
interface through which the user can select between three biased data sets, compare
a selection of metrics to evaluate the prejudice of the trained model, and choose a
bias mitigation algorithm to obtain a fair classifier. Finally, it allows to compare the
performance and bias metrics of the original model with the performance and bias
metrics of the model obtained by applying the selected bias mitigation technique.
Figure 3.4 shows an example of the described interface. The dataset selected for
this test is the one that was originally used by ProPublica during its investigation
of the COMPAS algorithm [7], the strategy chosen to reduce the prejudice is pre-
processing, and the algorithm used to mitigate the bias is the reweighing algorithm
[27]. The interface also compares the metrics of the original model with the metrics
of the mitigated model (grey and blue, respectively). Among the presented met-
rics, disparate impact (Equation 3.2) and statistical parity difference (Equation 3.3)
refers to the independence criterion, equal opportunity difference uses the equality
of opportunity definition of fairness (Equation 3.5), and average odds difference is
a way to measure separation (Equation 3.4).

67



Machine learning fairness

3.3.3 IBM Watson OpenScale
In Section 2.4, the IBM Watson OpenScale is already explained in most of its
features. In this section, the overview of the tool is completed by considering its
bias detection and bias mitigation capabilities. 5. Application to the loan approval
use case

Along with the performance monitoring, OpenScale also gives the possibility to
setup a monitor to track the fairness of the model at hand. This setup requires
the user to inform OpenScale about which are the sensitive features that must be
tracked. In addition, the user is asked to manually provide the distinction between
the privileged and unprivileged group. In one of the most recent updates of the
tool, the possibility to automatically recognise which features might be subject to
biases has been introduced, but this feature is really just a comparison between the
actual feature name and a dictionary of potentially biased feature names.

After the monitor has been properly set up, OpenScale uses the outputs from the
previously requested predictions to compute the rate of favourable outcomes for the
privileged and unprivileged groups. The presence of biases in the model is estimated
based on the disparate impact metric (Equation 3.2), which is compared to a user
defined threshold to decide whether to throw an alert. As for the performance
metrics tracking, OpenScale allows the user to group the predictions differently
based on the selected time frame, and to check for each time frame if the fairness
condition is satisfied (Figure 3.5a).

Finally, the tool allows the user, given a prediction which is suspected to be
biased, to generate an alternative prediction in which the distortion produced by
the prejudice has been removed. OpenScale also provides an interface that shows
the difference in performance between the original model and the model obtained
through the bias mitigation procedure (Figure 3.5b). The approach chosen by Open-
Scale to generate its bias-free predictions is not specified by IBM.

(a) Openscale’s comparison between the privi-
leged and unprivileged groups.

(b) OpenScale’s comparison between the per-
formances of the original model and of the un-
biased model

Figure 3.5: IBM OpenScale’s fairness monitoring feature.

68



Chapter 4

Application to the loan approval
use case

So far, the focus of this work has been on analysing and presenting the main theories
that have been proposed in the field of eXplainable machine learning and machine
learning fairness. Along with the theoretical discussion, a selection of libraries and
tools that implements the described concepts has been provided.

In this chapter, an application of the theories and frameworks previously pre-
sented is discussed. The concepts of interpretability and fairness are applied to the
use case of a loan approval process, and their results are made accessible through
an internet-based software application, which will be later referred to as the model
management application. This tool allows the user to manage different models and
datasets, monitor each model’s performance, and generate predictions alongside an
explanation of the factors that mostly influenced the model’s decision. Further-
more, the application provides an interface through which the user can analyse the
managed datasets and models and recognise whether some of them are affected by
prejudice. If a model’s behaviour is classified as biased, then the tool also offers
the feature to train an unbiased version of the model, which can be used to obtain
predictions in which the prejudice’s influence has been removed.

The chapter begins by presenting the use case in more depth. In Section 4.2,
the main tools and libraries used during the application development are described,
while in Section 4.3 the architecture of the software is presented. Section 4.4 pro-
vides a description of all the features available in the final application. Finally, in
Section 4.5 the model management application is compared to some of the solutions
presented in previous chapters.
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4.1 Context description
Money lending is one of the core businesses of every bank and it is one of the most
profitable activities conducted by these institutions. By granting loans to their
customers, banks earn a profit in the form of interest rates that customers accept
to pay in exchange for receiving the money. On the other hand, these activities
represent one of the greatest risks that a bank has to undertake. In order to asses
and limit the risk of lending money to a customer who won’t be able to pay, banks
must collect and analyse a lot of information about the individual who applied for
the loan. This data is needed to estimate the customer’s ability to pay his debt.
The pieces of information needed include the personal data about the customer
who made the application, his financial situation and credit history, as well as the
entity of the specific request made by the individual. The amount of data that is
required for the analysis, combined with the abundance of past information about
granted loans, make this one of the most interesting application fields for machine
learning techniques.

Although loan approval might benefit for the introduction of machine learn-
ing techniques to support the decision process, there are two factors that limits
their application possibilities in this field: first, loan approval processes are high
risk activities which requires the manager to understand the motivation behind a
machine learning model’s decision; second, the decision has a considerable impact
on the future of the customer who applied for the loan, and he must be provided
with explanations for why his application was rejected. Furthermore, such decision
must be devoid of biases to ensure that individuals from different backgrounds are
treated fairly.

In the specific use case presented in this work, the original goal was to analyse a
dataset of previously granted loans to extract some insights useful to predict which
customers were likely to default on their loans. The information produced by this
analysis would then be extended to those customer who had applied for a loan,
to estimate their future ability to live up to their promise to pay. The analysis’
results were made accessible through a internet-based application which provided
the skeleton for the machine learning models’ management platform. The interface
was then extended to leverage some of the model explanation methods presented
in Chapter 2 and some of the bias monitoring and mitigation techniques describes
in Chapter 3. Finally, a number of features to allow a user to intuitively load new
datasets, train new models and monitor the performance of existing models were
added to the final tool.
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4.2 Programming languages, frameworks, and tools
adopted

4.2.1 Backend
The backend of the model management application was built using Python 3.6 as
main programming language. To simplify the development phase, the database
chosen for data storage is SQLLite, which is accessed through a library called
SQLAlchemy. The application also leverage various libraries that provides extended
functionalities and data structures. This section lists the most important packages
exploited by the tool.

Pandas

Pandas is an open source Python package which provides a number of data struc-
tures and data analysis tools to efficiently manipulate the data at hand. The
main data structures offered by Pandas are the Series structure, to handle one-
dimensional data, and the DataFrame structure, which is used to store and ma-
nipulate two-dimensional data. The package also provides various utilities aimed
at simplifying the Input/Output operations from/to several formats (CSV, XLSX,
etc.).

Numpy

Numpy is a Python package for scientific computing. It provides a container to store
and manipulate multi-dimensional generic objects, with the possibility to define
arbitrary data-types. Furthermore, it includes a variety of mathematical functions
designed to efficiently work with the provided data structures.

Scikit-learn

Scikit-learn is an open source machine learning library for Python, which provides
an implementation of several supervised and unsupervised machine learning al-
gorithms such as decision trees, SVMs, and k-Means. Through its interface, data
scientists can test different techniques with minimal changes in the code. This li-
brary also provides a set of preprocessing features, as well as a number of functions
to perform model validation and to compare a model with another.

Flask

Flask is a lightweight web application microframework for Python. The term “mi-
cro” refers to the fact that the framework does not include a database abstraction
layer, form validation, or upload handling. Instead, Flask provides a minimalistic

71



Application to the loan approval use case

framework that can be extended through several wrapper packages that leverage
existing libraries and work seamlessly with the other extensions supported by Flask.
For instance, through its extension Flask-RESTful, the framework can be extended
to support the development of REST APIs. At its core, Flask acts as a wrapper for
other two packages:

Werkzeug This library includes a number of utilities for WSGI applications.
WSGI (Web Server Gateway Interface) is a calling convention for the Python
language which specifies how a web server communicates with web appli-
cations, and how to chain several web applications together to process one
request. Among its features, Werkzeug provides a request and response object
to interact with other web applications, as well as a routing system for match-
ing URLs to endpoints. It also includes a WSGI server to develop applications
locally.

Jinja Jinja is a templating engine for Python applications. It allows to create
templates, such as HTML page templates, which include special placeholders
used to write code using a Python-like syntax. These templates are rendered
by the engine to dynamically build the final page.

Hence, Flask provides a framework for reacting to external requests coming to
a specified URL, map it to a endpoint using Werkzeug utilities, and select and
customize an view to return as a response through the Jinja’s template engine.

SQLAlchemy

SQLAlchemy is a Python package that includes a suite of enterprise-level persis-
tence patterns used to provide access to a database storage in an efficient and
high-performing way. It implements a SQL abstraction toolkit which provides a
number of features to abstract from the specific DBMS implementation and to
generate custom SQL queries through Python functions. The package also includes
an optional Object Relational Mapper (ORM) extension, which extends the core
functionalities with features like the Unit Of Work system, used to rearrange SQL
operations for optimised performance, and the caching of previous queries.

Model interpretability and machine learning fairness packages

Several libraries have been used to extend the tool with model explanation and
bias mitigation capabilities. The application exploits the LIME [6] and SHAP [4]
libraries provided by the algorithms’ authors to estimate the feature scores or contri-
butions for a given prediction. Furthermore, the Anchor algorithm has been tested
by leveraging the original Anchor library provided by Ribeiro et al. Finally, the ap-
plication uses the bias mitigation algorithms’ implementations provided by IBM’s
open source framework AI Fairness 360 [9] to train fair models from biased ones.
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IBM Watson’s APIs

Even though the tool was created using exclusively open source technologies, a
variant that exploits the IBM Watson suite services for model interpretability has
been implemented. This version of the application interacts with the Watson Ma-
chine Learning service through its REST API to request the model’s predictions.
Furthermore, it communicates with the Watson OpenScale service to obtain expla-
nations for the requested predictions. The API provided by OpenScale is also used
for sending feedback data to the IBM’s tool.

4.2.2 Frontend

The graphical user interface of the application, accessible through a web browser,
is based on HTML pages that exploit CSS to enhance the pages’ layout. The inter-
face also has a number of interactive features created using JavaScript. As for the
backend, the frontend relies on external libraries to implement some functionalities
and create a better user experience.

JQuery

JQuery is one of the most popular JavaScript frameworks. It provides an API to
simplify a variety of tasks, such as HTML document manipulation and traversal,
event handling, and AJAX. Part of its popularity is due to its consistency in the
way it behaves across several browser, which simplifies the work of the programmer
who wants to implement an interactive functionality that runs independently of
the user’s browser. Another advantage of JQuery is its syntax, which allows the
programmer to write fewer lines of codes with respect to vanilla JavaScript, which
improves the readability and maintainability of the software.

BootStrap

Bootstrap is a HTML, CSS and JavaScript framework for creating web sites and
web applications. It provides a layout system (called Grid system) which allow to
build responsive web pages with minimal efforts. It follows a mobile-first approach,
which means that its components are optimised to work with mobile devices and
are scaled to fit a different layout when needed. Another feature of Bootstrap is
the set of pre-made, easily customisable components that are made available by
the frameworks. The components provided by Bootstrap are commonly used web
elements such as alert boxes, styled buttons, custom form layouts and navigation
bars. By combining Bootstrap with JQuery, other frequently used components such
as modal boxes and slideshows become accessible.
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Chart.js and ProgressBar.js

Along with Bootstrap, two other libraries are used to provide better looking plots
and other graphical elements. Chart.js is a JavaScript library for creating interactive
and responsive plots. It exploits the HTML5 canvas element, which guarantees
optimal rendering performance across all modern browsers, and it offers a variety
of charts such as horizontal and vertical bar charts, line charts, and bubble charts.
The library also provide a wide set of feature to customise every detail of the plot.
ProgressBar.js, on the other hand, is a simple, lightweight JavaScript library which
offers a set of functions to create responsive progress bars with different shapes.
The library offers a number of pre-made shapes such as lines and circles, but also
provide the user the ability to create its custom-made progress bar shape.

4.2.3 Support tools
For an application to fit into a company’s workflow and coexist with other pro-
grams, a number of additional tools are needed. These pieces of software are used
to automate tasks such as testing or deployment, track an application’s versions,
and share someone’s work with the rest of the team. In the case of the application
described in this chapter, the tools that supported the software development phases
that followed coding are described below.

Version control systems and GitLab

Version control systems (VCS) are a type of software that allows the programmer
to keep track of the changes that occur to a project’s artefacts over time by storing
different versions of each file. The assets that can be put under version control
include source code, text documents, and images, but it can be any file that makes
up the final project. By storing different versions of the same file, the programmer
can revert back to a past version when new updates inadvertently introduce errors
in the code or in other documents.

A particular type of VCS, called distributed version control system (DVCS),
provides further advantages by allowing users to share code and documents among
team members. Through this approach, the files under version control are stored in
one or more centralised servers, and the server’s content is mirrored by all clients
that are collaborating to the project. This way, every client has its own copy of the
repository and its history. DVCSs also provide other features:

Traceability VCSs track the changes made by any individual to a project’s files,
and enable users to trace every change back to the person that introduced it
and the time when the change occurred.

Access control Different users can be granted different visibility and/or editing
privileges.
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Branches A project can simultaneously evolve in different directions. VCSs track
all the evolutions of the project (called branches), and allow to merge different
branches when needed (e.g. when a feature is completed and can be safely
added to the rest of the application).

Conflict resolution When several people concurrently work on the same file, con-
flicts between the different versions of the document may arise. Version control
provides a set of utilities to manage the conflicts and merge the coexisting
versions of the file into a single version.

GitLab is a repository hosting and management platform built on top of Git,
one of the most popular DVCSs available today. It offers all the common features of
a version control system, while also integrating in the same product several DevOps
utilities such as issue trackers, continuous integration, and continuous delivery. Fur-
thermore, it provides greater security and a finer grained access control compared
to its competitors. These characteristics make this tool one of the preferred VCSs
at enterprise-level.

Jenkins

Continuous integration (CI) is a development practice that requires developers to
integrate their work in a shared repository on a daily basis, with the goal of minimis-
ing the amount of effort and the complexity required to integrate together pieces
of software built by different people. Whenever a programmer shares his code with
its peers, the code should be automatically built and tested. This way, issues can
be discovered early in the process, which reduces the time spent in debugging the
application at integration time.

Jenkins is an open source automation server which can be used to orchestrate
a chain of actions that are automatically executed when a developer shares its
work on a repository, thus simplifying the adoption of CI. The tasks that can be
automated by Jenkins include building, testing, delivering and deployment. The tool
offers a graphical user interface through which the developer can monitor the status
of each automated task and can be notified whenever a problem occurs. Jenkins
can also be connected to repository management platforms like GitLab. This way,
whenever a developer pushes a new version of the code to the shared repository,
Jenkins’ execution is triggered and the new code is automatically integrated with
the existing application.

Docker

When working on complex systems in distributed environments, correctly setting
up the configuration of each software component and its dependencies is a difficult
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task. This is especially true when the same configuration has to be run on sev-
eral machines, each of which might have its own requirements. To overcome these
limitations, Docker containers can be used.

A container is an encapsulated environment which is used as a wrapper for
the application and its dependencies. Based on software-level virtualisation (which
guarantees better performances with respect to the traditional virtual machines), a
container can be configured to include all the system tools and libraries required by
the application. Each container is isolated from the others, which allows for several
containers to be running at the same time.

The container configuration is described by what is called a Docker image.
This image includes all the code, dependencies, and system tools required to run
the application. Therefore, Docker makes the task of replicating the setup of an
application on different machines as simple as sharing a container image, which
will be executed by each machine using Docker.

4.3 Architecture design

4.3.1 High-level overview
Section 4.2 described which libraries and frameworks are exploited by the model
management application. Among the frameworks presented in that section, the one
that influences the application’s structure the most is Flask. While the package
does not dictates any particular architectural choice, its developers has provided
some design recommendations for a better organisation of the project. The model
management application follows the suggested approach, which requires to group
all components into a single package. Figure 4.1 shows the project’s high level
structure, and its main elements are described below:

• /run.py: This file is invoked to start up the development server. It retrieves
a copy of the application from the package and runs it.

• /Dockerfile: A text document used by Docker to assemble an image for the
application.

• /requirements.txt: This file lists all the dependencies of the application.

• /application/: The package that contains the application.

• /application/__init__.py: This file initializes the various components of
the application (ORM, security configuration, etc.).

• /application/templates/: The templates directory stores the html tem-
plates that are used by Jinja2 to generate the pages to return to the user.
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• /application/static/: This directory includes the style sheets, JavaScript
files, and images used by the html templates

Figure 4.1: Part of the project’s directory structure

Another pattern followed during the design of the architecture is the classic
web-based application’s division into presentation, service, and domain layers. In
the case of the described application:

• /application/routes.py is the component that deals with the requests that
come to a specific URL, forwards the requests to the service layer, and selects
a specific view based on the output of the service layer (most of the times,
the view is derived from one of the HTML templates available);

• /application/services/ represents the directory that contains the files
which compose the service layer. This layer’s job is to describe the busi-
ness logic of the application. It receives the requests from the /application/
routes.py and, for the most complex tasks, it delegates the work to the
classes provided in /application/core/;

• /application/models/ is the set of classes that describes the data domain
layer, that is, the entities that are handled by the application. These objects
can be stored in the database and retrieved from it.

One last directory that needs to be discussed is the /application/core/ folder.
This folder is where most of the value adding functionalities of the application are
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implemented. It contains all the utility methods and classes used to train and
monitor the machine learning models. It also includes the classes that generate the
model’s explanations and the ones that apply the bias mitigation algorithms.

4.3.2 Model’s description
The domain layer of the model management application is the foundation of the
whole software program. It describes the main entities that are handled by the
application and how they interact with each other. In this project, these classes
are mainly used for storing and retrieving information from the database, whereas
most of the computation is based on Pandas’ dataframes or Numpy’s arrays.

Figure 4.2: Class diagram of the model’s structure

Figure 4.2 shows the class diagram for the application’s domain. A description
of the classes is also provided below:

Dataset It describes the dataset used to train the model. It is characterised by an
identifier, the number of rows of the dataset, and a name, which is used as a
user friendly identifier of the dataset. The dataset ID is also used to retrieve
the dataset’s content from the local storage.

Label The Label class represents the values that can be assigned to the labels of a
dataset. Each possible combination {dataset_id, label_value} is described by
an instance of this class. To characterise each label, the information about its
value and its number of occurrences in the associated dataset is added.

Model It denotes the model trained using a specific dataset. Each model is de-
scribed by an identifier, a descriptive name, and by the date it was added to
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the system. The unbiased boolean attribute is used to specify if the model
was obtained by applying a bias mitigation algorithm to another model.

ML_Algorithm This entity is used to describe the algorithm with which the
model’s is trained with. It is used to provide some additional information to
the user and during the bias mitigation process to train an unbiased version
of an unfair model.

PredictionData It is used to represent the prediction computed by a model for a
given instance provided by the user. The outcome of the prediction is stored in
the form of the probability returned by the model. The entity also includes, for
each attribute of the instance being predicted, its feature value and the related
score or weight obtained using a model-agnostic interpretability algorithm like
LIME or SHAP.

FeedbackData It describes a feedback provided for a given prediction. The feed-
back is represented as a boolean attribute, where true means that the predic-
tion aligns with the expectation of the user or with the real outcome.

4.3.3 Basic application’s workflow
To allow a better understanding the most relevant core features of the application,
and provide a context for their usage, the basic workflow of the program is presented
now. The graphical user interface that supports this process is described in detail
in Section 4.4.

Dataset preprocessing and setup

Before loading a dataset into the application, a preliminary data cleaning step is
required in order for the program’s methods to work properly. This procedure is
required to get rid of missing data in the dataset (either by removing the entire
row or by replacing it with a reasonable value), standardise equivalent values, and
group the values of high cardinality features into discrete bins. After a dataset
has been properly prepared, it can be loaded in the application and used to train
one or more machine learning’s models. In the current iteration of the project, the
column’s names and types are hard coded, but in the next versions of the software
these pieces of information will be provided by the user during the setup phase of
the dataset.

Training the model

Once the dataset is available for selection, the training phase can begin. The sys-
tem trains several models using different machine learning algorithms. The trained
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models are presented to the user along with some metrics to evaluate the perfor-
mance of each model. The user can then compare the different models and select
the best one, which is permanently stored in the database.

Requesting a prediction and collecting feedback

The user can now select a model to predict the probability that a customer will
be able to repay a loan based on his personal data. At the same time, the system
will compute the explanation using one of the algorithms presented in Section 2.3
and will store the prediction’s details in the database. Once the prediction has been
computed, the user can provide a feedback which is also stored in the database.

Performance monitoring

The feedback collected from the user is used to compute some basic statistics about
the performances of the managed models, such as accuracy, recall, and precision.

Fairness monitoring and bias mitigation

The information derived from the model’s predictions is used to monitor how a
sensitive attribute influences the model’s behaviour. If a model’s decisions are con-
sidered to be unfair, then an unbiased version of the model can be trained using
one of the bias mitigation algorithms presented in Section 3.2. Additionally, the
application checks if a prejudice can be traced back to the original dataset label’s
distribution.

4.3.4 A standardised explanation framework
The model management application provides several ways through which the user
can generate an explanation for a given prediction. The backend approach followed
to provide these functionalities is based on a small framework that offers a stan-
dardised access to all these methods. The framework’s main classes are described
below and are represented by the class diagram depicted in Figure 4.3.

Configuration class

The Configuration class performs all the preprocessing tasks required to use the
interpretability algorithms. It requires a DataFrame object, from which most of the
information required to initialise the interpretability algorithms is generated. The
provided DataFrame is used to extract the categorical and numerical features to
be evaluated, convert the categorical values into numerical data (while storing the
mapping between the two types to allow the reverse process), and apply the one
hot encoding procedure to the categorical attributes. The Configuration class is
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Figure 4.3: Class diagram of the model explanation framework

also used to prepare the instance to be explained for the application of the inter-
pretability algorithms by exploiting the data extracted during the Configuration’s
initialisation phase.

Explainer interface

All the “explainers” available shares the same structure, which provides a common
interface that standardise the access to the different interpretability algorithms and
allows to easily switch from one explainer to the other or to use different explain-
ers at the same time. The explainer classes are initialised using the Configuration
parameter previously described, and their explanations are generated through the
compute_explanation() method. The produced explanation can be returned using
different formats (list, dictionaries, etc.) depending on the specific implementation.

The Explainer implementations

There are four main implementations of the “interface” presented above. Each of
these classes leverage some other library to offer its services, but the work required
to initialise and format the requests to these external packages is hidden from the
developer and is handled by the Explainer and Configuration objects.

LimeExplainer This class produces a score for each feature based on the LIME
algorithm. It exploits the LIME implementation proposed by Ribeiro et al.
[6], but normalises the score produced by the algorithm in such a way that,
by summing up all the scores, the total value amounts to 100. This operation
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is motivated by the fact that the average user might misinterpret LIME’s
results and might find the its scores to be a bit confusing.

ShapExplainer Analogously, the ShapExplainer class is a wrapper around the
SHAP implementation provided by Lundberg and Lee [4]. SHAP’s output
explanation is then processed by the ShapExplainer class to produce a result
similar to the one provided by LIME.

AnchorExplainer Another algorithm for which an explainer is provided is the
Anchor algorithm by Ribeiro et al. [35]. As with the previous explainers, the
AnchorExplainer class leverages the implementation proposed by the authors
and provides a standardised access to the external library.

OpenscaleExplainer Finally, an explainer adaptation to connect to IBM’s Wat-
son Machine Learning and Openscale APIs is provided. Due to its peculiar
nature, this class works a bit differently with respect to the previous explain-
ers and requires some additional setup. Nonetheless, its usage is similar to
the one of the other explainers and most of the issues involved with making
the API requests are hidden from the developer.

Explanation framework’s workflow

The standard process, which is also shown in Figure 4.4, is described as follows:
first, a Configuration object is created by the service layer using the original train-
ing dataset (or an equivalent dataset). Second, the generated instance is used to
initialise an Explainer object. In the third step, the service layer requires the new
Explainer object to provide an explanation for a given instance. Since the actual in-
terpretability algorithm requires the instance to be provided in a specific format, the
Explainer exploits its internal Configuration to prepare the given instance accord-
ingly. Once the Explainer ’s method has finished its computation, the explanation
can be retrieved by the service layer.

4.3.5 The bias detection and mitigation processes

One of the most important features of the model management application is the
capability to inspect the dataset label distribution and the model’s behaviour for
biases. In the current version of the software, only a sensitive attribute (i.e. the
nationality of the customer) is tracked. In future iterations, the goal is to extend
this process to all other attributes, in order to directly suggest to the user which
features might carry some prejudice without any hard coded limitation.
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Figure 4.4: Simplified sequence diagram of the model explanation framework

Determining the bias presence

The model management application can inspect both the original dataset and
model’s behaviour to determine the presence of prejudice. In the case of the dataset,
its rows are used to identify if a bias can be traced back to the original data (this
feature is meant for diagnostic purposes only); instead, the system uses the predic-
tions made by the model being analysed to inspect the model’s behaviour. If a bias
is detected from the model’s predictions, then an unbiased version of the model
can be trained and stored for future predictions. Apart from these differences, the
algorithm used to identify the presence of prejudice is the same for both dataset
and model.

The bias detection base algorithm is described next. The algorithm’s input is
provided in the form of a pandas’ DataFrame object D, which is then inspected for
biases using the disparate impact metric (Equation 3.2). The choice of using the
independence criterion is based on the fact that this definition has legal support.
Moreover, the selected criterion is supported by a higher number of bias mitigation
algorithms. As part of the process, the DataFrame’s rows d ∈ D are grouped based
on the sensitive attribute value s (e.g. the nationality). These groups are later
referred to as the sensitive groups g ∈ G. For each sensitive group g, the ratio of
positive outcomes is computed, and G is split into one or more privilege classes
C ∈ C, where C = {gi | gi ∈ G, 0 < i ≤ |G|}, based on two factors: each privilege
class C must represent at least 5% of the entire population of D, and the disparate
impact between C and any other sensitive group g (or vice versa) must be lower than
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0.8. The first constraint is applied to guarantee that each privilege class contains a
statistically relevant number of instances, while the 0.8 threshold has been selected
to comply with the 80%-rule [13]. The output of the algorithm is a set of privilege
classes C, where the class with the highest rate of positive outcomes is considered
to be the privileged class, and the other classes are referred to as the unprivileged
classes. Thus, if C in composed by at least two privilege classes, then the dataset
or model being evaluated is considered to be biased. An outline of the process is
presented in Algorithm 1.

Algorithm 1 Outline of the bias detection algorithm
function ComputePrivilegeClasses(D)

C = ∅;
C = ∅;
t← len(D);
G← Select ∗ From D GroupBy s;
for all g ∈ G do

if (len(C) ≥ t) and (disparate_impact(C, g) < 0.8) then
C← C ∪ {C};
C ← ∅;

end if
C ← C ∪ g;

end for
C← C ∪ {C};
return C;

end function

Training an unbiased model

If a model’s behaviour is considered to be unfair, the model management system
provides the user the possibility to train an unbiased version of the same model. For
this purpose, Algorithm 1 is used to split the model into two classes: the privileged
class, which is the set of the sensitive feature values with the highest ratio of positive
outcomes, and the unprivileged class, which contains the remaining values. It must
be noted that there may be values of the sensitive feature for which no prediction is
available yet. Based on the criterion described above, these values will be assigned
to the unprivileged class. The rationale behind this choice is that, in a situation in
which the system has no information about how a model perceives a specific value,
by assigning it to the unprivileged class the system is guaranteed to not exacerbate
pre-existing unknown prejudices. Once the division of the feature values between
privileged and unprivileged classes has been determined, the model management
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application exploits the IBM AIF360 framework to apply a bias mitigation algo-
rithm. The specific algorithm selected for this task is the Reweighing algorithm
presented in Section 3.2. There are several reasons why this algorithm was chosen:
first, the system has access to the dataset used for training the inspected model,
which means that a pre-processing strategy like the Reweighing algorithm, which
is likely to provide better results, can be applied; second, the Reweighing algorithm
bases its decision on the independence criterion, which is the same fairness defi-
nition used to perform the distinction between privileged and unprivileged group;
third, the selected algorithm’s output is a set of weights, which is easier to interpret
with respect to other techniques’ outputs. Once the new set of weights has been
determined, the unbiased version of the inspected model can be trained using the
same machine learning algorithm used for the original model. The new model is
then stored in the database and is available for performing new predictions.

4.4 The model management application’s inter-
face

Section 4.3 focused on the most important components of the architecture of the
model management application. It provided an overview of the whole project’s
structure, as well as some insights on how the most relevant features of the ap-
plication have been designed and implemented. This section’s objective instead is
to present the views that compose the interface of the software program and to
describe how the different views are structured. The focus here is not on presenting
the technical implementation of the interface, which is rather straightforward once
the backend correctly provides the desired information. Instead, this section’s intent
is to provide an overview of the application from the average user’s perspective.

4.4.1 Dataset and model setup
Once the user accesses the model management application, he must provide a
dataset from which one or more machine learning models will be trained. Figure
4.5 depicts the view that is presented to the user. By clicking on the blue button
on the top right corner of the page, the user is presented with a modal he can use
to provide a name for his dataset and the dataset itself. Once the dataset has been
loaded into the system, its associated tab is shown on the interface, along with some
diagnostic information, such as the size of the dataset and if the system detected
the possible presence of biases in the dataset. The system also offers the possibility
to download the dataset csv file.

After the dataset has been loaded, in another view the user can select the
provided dataset and train a new model by clicking on the “train” button. The
system tests several machine learning models, and the results are presented to the
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Figure 4.5: The dataset setup view of the the model management application

user in different tabs. The system ranks the trained models based on the f1-score
metric and initially suggests to the user the model with the highest f1-score. The
system also allows the user to compare the performance of the selected model with
the performance of the models already in the system. Finally, the user can store the
currently selected model by providing a name for the new model and by clicking on
the “store” button on the bottom left of the screen. Figure 4.6 presents a screenshot
of the described view.

4.4.2 Requesting a prediction and the associated explana-
tion

To request a prediction, the user must fill the provided form (Figure 4.7), which
contains the attributes selected for this test, as well as a drop-down list from which
the model selected for the prediction can be chosen. By clicking on the “verify”
button, the prediction result and explanation are generated. As Figure 4.8 shows,
the final output, along with its probability, is presented in the top-left box, while
in the right box an explanation is provided. In the example, the algorithm used for
generating the explanation is SHAP. Finally, the user can provide a feedback by
clicking on one of the two buttons contained in the bottom-left box.

One thing that has been omitted from the previous description is the checkbox
next to the “nationality” field. When a user trains a new model, a second model
without the sensitive attribute is trained, and this “unbiased” version of the model
can be used for the prediction by deselecting the “nationality” checkbox. This
fairness approach follows the “fairness through unawareness” criterion presented in
Section 3.1, and was the original naive strategy followed to solve the fairness issue.
This notion of fairness was later substituted with the concept of independence, and
the checkbox feature, while deprecated, is left for flexibility and testing purposes.
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Figure 4.6: The model training interface provided by the model management ap-
plication

Figure 4.7: The model management application’s form to request a new prediction

4.4.3 Bias detection and mitigation

By navigating to the “fairness” section, the user is presented with the privilege
class division for the most recently uploaded dataset (Figure 4.9). The “nationality”
partitioning is obtained by applying the procedure described in Algorithm 1. From
the first tab in the navigation menu on the left, the user can choose the dataset or
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Figure 4.8: An example of a prediction generated by the model management appli-
cation

model to analyse. Moreover, by selecting the “training” tab, the user can request
the system to train a new version of the model by exploiting the Reweighing bias
mitigation algorithm. Once the training is completed, the model is permanently
stored in the system, along with its previous version, and can be selected in the
“evaluate” section of the interface. A comparison between the prediction generated
by the biased version of a given model and the prediction generated for the same
instance by the unbiased version of the model is provided in Figure 4.10.

4.5 Comparison with existing solutions

The model management application presented in this chapter has been developed
with the dual goal of providing a management platform to support a loan approval
process, and laying out the foundation for a more general model management suite.
The latter intent is made evident by the generic description that was provided for
most of the structures and features presented. Of course, the current version of the
application has been developed around the loan approval use case, and some of
its parts have been hard coded to fit the case. However, there are already several
features that are mostly independent from the specific context. For instance, the
standardised explanation framework presented in Section 4.3.4 is not bound to any
dataset schema. This section’s focus is on comparing the features already available
in the tool (considered in their most general form) with the functionalities provided
by other solutions presented in this work (Section 2.4 and Section 3.3).
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Figure 4.9: Bias detection view of the model management application

(a) (b)

Figure 4.10: A comparison between the prediction’s explanations generated by the
unfair (left) and fair (right) models for the same instance.

Model Management Application vs OpenScale
The most obvious comparison is between the model management application and
IBM’s Watson OpenScale service. Both tools are meant to provide a suite to monitor
the performance of the available models, interpret their results, and react to unfair
behaviours of the models. While OpenScale does not directly provide the capability
to manage the user’s datasets and train custom models, these tasks are achieved
by integrating OpenScale with the rest of the Watson environment. Indeed, the
suite to which OpenScale belongs includes other tools that assist the user during
all the steps related to developing his custom machine learning model, in a way that
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its much more flexible with respect to the one detailed by the model management
application. Moreover, OpenScale is able to provide its management services for
different types of classifiers, namely image, multi-class, and binary classifiers.

On the other hand, the model management application has the advantage of
providing a variety of interpretability algorithms (LIME, SHAP, Anchor), most of
which are interchangeable with minimal effort. The tool also introduces a different
approach to detecting the bias. One of OpenScale’s greatest limitations is that the
privileged and unprivileged groups must be selected in advance when setting up
the fairness monitor. This operation may become cumbersome as the cardinality
of the sensitivity attribute grows. Moreover, the user may not be aware of which
value belongs to which group. On the contrary, the approach detailed in Algorithm
1 doesn’t require any setup by the user.

There’s also a number of factors that might limit the application of a commercial
tool such as OpenScale. The first, and in many cases the most important argument
against OpenScale, is the expensiveness of the tool. Other issues are related to the
lack of control over what happens inside OpenScale and the requirement to have
the training data stored on IBM’s cloud. Finally, some limitations are related to
OpenScale being a recent addition to IBM’s services. The tool’s first commercial
version was released around April 2019, and a new beta version is underway. This
means that there are several issues that puts a practical limitation to the afore
mentioned flexibility. For instance, at the time when the tool was tested the machine
learning package scikit-learn was not fully supported.

Comparison with other tools
Though the only direct “competitor” of the model management application is Open-
Scale, there are other tools which presents some similarities with the application
described in this chapter. The open source libraries Skater and ELI5 presented in
Section 2.3 both offer a number of utilities to provide model interpretability. While
the model management application doesn’t introduce any original implementation
of the interpretability algorithms provided, its approach based on the combination
of the Explainer and Configuration classes offers an easier and more flexible access
to a wider array of interpretability algorithms.

The Google What If Tool (WIT) is another service which provides further in-
sights on how a model behaves. The main difference with other solutions like Open-
Scale or the model management application presented here is the approach chosen
to interpret the model’s behaviour. The visual approach followed by WIT leverages
the predictions obtained from a test set to provide customisable graphs which of-
fer a better understanding of the relationship between different attributes and the
predicted label. The tool is also useful for comparing different instances and for
observing how each prediction changes as its attributes values are modified. While
WIT is great for a data scientist who is trying to better understand his model, most
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users want a straightforward explanation for why a certain result was obtained. On
the other hand, the model management application was designed with the goal of
providing interpretations which can be effortlessly understood even by non-expert.

91



Chapter 5

Conclusion and future work

In recent years, machine learning applications have become increasingly ubiquitous.
The pattern recognition capabilities provided by these strategies has proved to
be one of the best ways to deal with the growing amount of information that is
available for analysis. This fact led machine learning techniques to be adopted in
increasingly high risk fields, like medicine or finance. Moreover, as machine learning
started to be applied in loan approval or school admission processes, the impact
these strategies has on people’s lives became evident. Hence, this surging popularity
must be backed up by an evolution of the tools and techniques that allow people
to monitor, interpret and react to the machine learning models’ behaviour.

This work presented an analysis of the most popular solutions that have been
introduced to meet the need for trustworthy artificial intelligent systems, which
leverage machine learning strategies to provide support to decision processes. The
problem was framed into two separate topics: the demand for interpretable machine
learning models, and the need for these models to treat different groups of people
equally. The proposed techniques and tools were then applied to a loan approval
process, with the goal of developing an easy to use platform for model manage-
ment capable of supporting the whole life cycle of a machine learning model. The
resulting model management application provides the user the tools to train its
own machine learning models, monitor their performance, examine their predic-
tions, and inspect the model’s decisions for unfair behaviour. These features were
designed with simplicity in mind. Indeed, the main target of the presented system
are non-experts who don’t have the technical background or the time required to
understand the technicalities of machine learning, or to analyse and interpret com-
plex graphical representations, but still need to trust the output or their system
and react accordingly if the model doesn’t behave as expected.

The presented model management application, while capable of supporting the
manager or data scientist from the training of a machine learning model to its
dismissal, is an early stage tool with plenty of room for improvement. From an
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architectural point of view, the fact that back-end and front-end are strictly de-
pendent one from the other is a huge limitation. To overcome this issue, in future
iterations the tool might be rewritten according to the REST paradigm to provide
better independence between back-end and front-end. Defining a view-independent
API will also help the process of generalising the current architecture of the back-
end. Another drawback of the current implementation is indeed its dependency from
the specific use case. By generalising the architecture, the structures presented in
Chapter 4 may be leveraged to provide the foundation for an open source tool ca-
pable of offering a standardised access to several model interpretability algorithms
as well as bias detection functionalities. The interface, in turn, might be improved
in terms of capabilities and flexibility by introducing a front-end web framework
like Angular. In terms of features provided, the model management application can
be extended by providing a finer grained control over the datasets and models man-
aged by the user, and by introducing the support for a greater number of machine
learning and model interpretability algorithms.

The steps described here provide a roadmap for evolving the model management
application. Of course, future versions will also be affected by feedback from the
customer. The tool’s main goal is to simplify the management of machine learn-
ing models and build the user’s trust over machine learning techniques. Hence,
interactions with the final user are crucial to understand which are the main limi-
tations of the system, and will provide further insights for extending the presented
application.

93



Bibliography

[1] url: https://www.kaggle.com/c/titanic/overview.
[2] url: https://pair-code.github.io/what-if-tool/.
[3] url: https://pair-code.github.io/facets/.
[4] url: https://github.com/slundberg/shap.
[5] url: https://github.com/oracle/Skater.
[6] url: https://github.com/marcotcr/lime.
[7] url: https : / / www . propublica . org / article / machine - bias - risk -

assessments-in-criminal-sentencing.
[8] url: https://aif360.mybluemix.net/.
[9] url: https://github.com/IBM/AIF360.
[10] url: https://github.com/oracle/Skater.
[11] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine

Learning. http://www.fairmlbook.org. fairmlbook.org, 2019.
[12] Rachel K. E. Bellamy et al. “AI Fairness 360: An Extensible Toolkit for

Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias”. In:
CoRR abs/1810.01943 (2018). arXiv: 1810.01943. url: http://arxiv.org/
abs/1810.01943.

[13] D. Biddle. Adverse Impact and Test Validation: A Practitioner’s Guide to
Valid and Defensible Employment Testing. Gower, 2005. isbn: 9780566086540.
url: https://books.google.it/books?id=q7zZ8h5X3nQC.

[14] Muhammad Bilal Zafar et al. “Fairness Beyond Disparate Treatment &amp;
Disparate Impact: Learning Classification without Disparate Mistreatment”.
In: arXiv e-prints, arXiv:1610.08452 (2016), arXiv:1610.08452. arXiv: 1610.
08452 [stat.ML].

[15] L. Breiman et al. Classification and Regression Trees. Monterey, CA:Wadsworth
and Brooks, 1984.

94

https://www.kaggle.com/c/titanic/overview
https://pair-code.github.io/what-if-tool/
https://pair-code.github.io/facets/
https://github.com/slundberg/shap
https://github.com/oracle/Skater
https://github.com/marcotcr/lime
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://aif360.mybluemix.net/
https://github.com/IBM/AIF360
https://github.com/oracle/Skater
http://www.fairmlbook.org
https://arxiv.org/abs/1810.01943
http://arxiv.org/abs/1810.01943
http://arxiv.org/abs/1810.01943
https://books.google.it/books?id=q7zZ8h5X3nQC
https://arxiv.org/abs/1610.08452
https://arxiv.org/abs/1610.08452


BIBLIOGRAPHY

[16] Leo Breiman. “Random Forests”. In: Mach. Learn. 45.1 (Oct. 2001), pp. 5–32.
issn: 0885-6125. doi: 10.1023/A:1010933404324. url: https://doi.org/
10.1023/A:1010933404324.

[17] Flavio Calmon et al. “Optimized Pre-Processing for Discrimination Preven-
tion”. In: Advances in Neural Information Processing Systems 30. Ed. by
I. Guyon et al. Curran Associates, Inc., 2017, pp. 3992–4001. url: http:
/ / papers . nips . cc / paper / 6988 - optimized - pre - processing - for -
discrimination-prevention.pdf.

[18] Mark W. Craven and Jude W. Shavlik. “Extracting Tree-structured Rep-
resentations of Trained Networks”. In: Proceedings of the 8th International
Conference on Neural Information Processing Systems. NIPS’95. Denver, Col-
orado: MIT Press, 1995, pp. 24–30. url: http://dl.acm.org/citation.
cfm?id=2998828.2998832.

[19] Amit Dhurandhar et al. “Explanations based on the Missing: Towards Con-
trastive Explanations with Pertinent Negatives”. In: CoRR abs/1802.07623
(2018). arXiv: 1802.07623. url: http://arxiv.org/abs/1802.07623.

[20] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap.
Monographs on Statistics and Applied Probability 57. Boca Raton, Florida,
USA: Chapman & Hall/CRC, 1993.

[21] Michael Feldman et al. “Certifying and removing disparate impact”. In: arXiv
e-prints, arXiv:1412.3756 (2014), arXiv:1412.3756. arXiv: 1412.3756 [stat.ML].

[22] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All Models are Wrong,
but Many are Useful: Learning a Variable’s Importance by Studying an En-
tire Class of Prediction Models Simultaneously. 2018. arXiv: 1801 . 01489
[stat.ME].

[23] Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.
“On the (im)possibility of fairness”. In: CoRR abs/1609.07236 (2016). arXiv:
1609.07236. url: http://arxiv.org/abs/1609.07236.

[24] Moritz Hardt, Eric Price, and Nathan Srebro. “Equality of Opportunity in
Supervised Learning”. In: CoRR abs/1610.02413 (2016). arXiv: 1610.02413.
url: http://arxiv.org/abs/1610.02413.

[25] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of
statistical learning: data mining, inference and prediction. 2nd ed. Springer,
2009. url: http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

[26] High-Level Expert Group on AI. Ethics guidelines for trustworthy AI. eng. Re-
port. Brussels: European Commission, Apr. 2019. url: https://ec.europa.
eu/digital-single-market/en/news/ethics-guidelines-trustworthy-
ai.

95

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention.pdf
http://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention.pdf
http://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention.pdf
http://dl.acm.org/citation.cfm?id=2998828.2998832
http://dl.acm.org/citation.cfm?id=2998828.2998832
https://arxiv.org/abs/1802.07623
http://arxiv.org/abs/1802.07623
https://arxiv.org/abs/1412.3756
https://arxiv.org/abs/1801.01489
https://arxiv.org/abs/1801.01489
https://arxiv.org/abs/1609.07236
http://arxiv.org/abs/1609.07236
https://arxiv.org/abs/1610.02413
http://arxiv.org/abs/1610.02413
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai


BIBLIOGRAPHY

[27] Faisal Kamiran and Toon Calders. “Data preprocessing techniques for clas-
sification without discrimination”. In: Knowledge and Information Systems
33.1 (2012), pp. 1–33. issn: 0219-3116. doi: 10.1007/s10115-011-0463-8.
url: https://doi.org/10.1007/s10115-011-0463-8.

[28] Faisal Kamiran, Asim Karim, and Xiangliang Zhang. “Decision Theory for
Discrimination-Aware Classification”. In: Proceedings of the 2012 IEEE 12th
International Conference on Data Mining. ICDM ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 924–929. isbn: 978-0-7695-4905-7. doi:
10.1109/ICDM.2012.45. url: http://dx.doi.org/10.1109/ICDM.2012.
45.

[29] Emilie Kaufmann and Shivaram Kalyanakrishnan. “Information Complex-
ity in Bandit Subset Selection”. In: Proceedings of the 26th Annual Confer-
ence on Learning Theory. Ed. by Shai Shalev-Shwartz and Ingo Steinwart.
Vol. 30. Proceedings of Machine Learning Research. Princeton, NJ, USA:
PMLR, 2013, pp. 228–251. url: http://proceedings.mlr.press/v30/
Kaufmann13.html.

[30] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”. In: Advances in Neural Information Processing Systems 30. Ed.
by I. Guyon et al. Curran Associates, Inc., 2017, pp. 4765–4774. url: http:
//papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-
model-predictions.pdf.

[31] Scott M Lundberg et al. “Explainable AI for Trees: From Local Explanations
to Global Understanding”. In: arXiv preprint arXiv:1905.04610 (2019).

[32] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black
Box Models Explainable. https://christophm.github.io/interpretable-
ml-book/. 2019.

[33] J. Ross Quinlan. C4.5: Programs for Machine Learning. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1993. isbn: 1-55860-238-0.

[34] David Reinsel, John Gantz, and John Rydning. DataAge 2025 - The digiti-
zation of the world. IDC, 2018.

[35] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors: High-
Precision Model-Agnostic Explanations”. In: AAAI Conference on Artificial
Intelligence (AAAI). 2018.

[36] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I
Trust You?": Explaining the Predictions of Any Classifier”. In: CoRR abs/1602.04938
(2016). arXiv: 1602.04938. url: http://arxiv.org/abs/1602.04938.

[37] Lloyd S. Shapley. A Value for n-Person Games. 1953, pp. 307–317.

96

https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1109/ICDM.2012.45
http://dx.doi.org/10.1109/ICDM.2012.45
http://dx.doi.org/10.1109/ICDM.2012.45
http://proceedings.mlr.press/v30/Kaufmann13.html
http://proceedings.mlr.press/v30/Kaufmann13.html
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938


BIBLIOGRAPHY

[38] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning Im-
portant Features Through Propagating Activation Differences”. In: CoRR
abs/1704.02685 (2017). arXiv: 1704.02685. url: http://arxiv.org/abs/
1704.02685.

[39] M. Stone. “Cross-Validatory Choice and Assessment of Statistical Predic-
tions”. In: Journal of the Royal Statistical Society. Series B (Methodological)
36.2 (1974), pp. 111–147. issn: 00359246. url: http://www.jstor.org/
stable/2984809.

[40] Erik Štrumbelj and Igor Kononenko. “Explaining prediction models and indi-
vidual predictions with feature contributions”. In:Knowledge and Information
Systems 41.3 (2014), pp. 647–665. issn: 0219-3116. doi: 10.1007/s10115-
013-0679-x. url: https://doi.org/10.1007/s10115-013-0679-x.

[41] Samuel Yeom and Michael Carl Tschantz. “Discriminative but Not Discrim-
inatory: A Comparison of Fairness Definitions under Different Worldviews”.
In: CoRR abs/1808.08619 (2018). arXiv: 1808.08619. url: http://arxiv.
org/abs/1808.08619.

[42] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. “Mitigating Un-
wanted Biases with Adversarial Learning”. In: CoRR abs/1801.07593 (2018).
arXiv: 1801.07593. url: http://arxiv.org/abs/1801.07593.

97

https://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685
http://www.jstor.org/stable/2984809
http://www.jstor.org/stable/2984809
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x
https://arxiv.org/abs/1808.08619
http://arxiv.org/abs/1808.08619
http://arxiv.org/abs/1808.08619
https://arxiv.org/abs/1801.07593
http://arxiv.org/abs/1801.07593

	Introduction
	Ethics Guidelines for Trustworthy Artificial Intelligence
	Context and scope of this work

	Interpretability
	The need for interpretability
	Traditional solutions
	Interpretable models
	Model evaluation metrics
	Data visualisation techniques

	Model-agnostic algorithms
	LIME
	Shapley values
	SHAP
	Anchor
	Other explanation algorithms

	Tools and frameworks for model interpretability
	IBM Watson OpenScale
	Google What-If tool
	SHAP Framework
	Skater
	ELI5


	Machine learning fairness
	Fairness definitions and relevant metrics
	Fairness criteria
	Relationships between different criteria

	Bias mitigation algorithms
	Pre-processing
	In-processing
	Post-processing
	How to choose a bias mitigation algorithm

	Tools and frameworks for ML fairness
	Model interpretability as a bias detection tool
	IBM AI Fairness 360
	IBM Watson OpenScale


	Application to the loan approval use case
	Context description
	Programming languages, frameworks, and tools adopted
	Backend
	Frontend
	Support tools

	Architecture design
	High-level overview
	Model's description
	Basic application's workflow
	A standardised explanation framework
	The bias detection and mitigation processes

	The model management application's interface
	Dataset and model setup
	Requesting a prediction and the associated explanation
	Bias detection and mitigation

	Comparison with existing solutions

	Conclusion and future work
	References

