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Abstract 
 

Interpreting the underlying semantic information in the art pieces with their context is very essential 

for understanding the hidden meaning in them. However, even for professionals, analyzing the 

scene is challenging due to the incredibly intricate and sophisticated portrayal of these artworks. 

Recently, many researches have established the viability of using AI methods for these purposes. In 

the light of this, this work uses Object Detection models of YOLOv5 and Faster R-CNN used in 

Computer Vision domain of Machine Learning to make an attempt on iconography of paintings of 

Holy Mary. The results showed that the models were able to predict Holy Mary; however, an 

explainable prediction of the results using CAM was not completely achieved.  
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Section 1: Introduction 
 

The word “iconography” comes from two Greek words, eikon (meaning “image”) 

and graphe (meaning “writing”). Together we get “image-writing,” so the word “iconography” In this 

case, expresses the concept that a picture can tell a story. It is actually more difficult to grasp an 

image's iconography than to understand its subject matter, since it entails knowing the unique 

culturally produced symbols and motifs present in a piece of art that might assist us in identifying its 

subject matter. It is necessary to be knowledgeable of the symbols' culturally unique meaning in 

order to fully understand them when they are depicted in an artwork. 

 

 

Section 1.1: Motivation 
 

A research into machine learning applications in iconography led to the conclusion that 

iconographical analysis of Christian artworks have used image classification techniques on full 

images of Christian saints. The motivation then arise for this work was to make this task an object 

detection problem by making use of a current state-of-the-art models (SOTA) that would train on 

key objects that appear regularly in pictures of Christian artworks and doing inference on them. An 

explainable AI technique like CAM was then to be used to see the relevancy of the results. 
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Section 1.2: Aim of this Thesis 
 

Goal of thesis was to do iconographic analysis on Christian saint Holy Mary using object detection 

models from Computer Vision techniques of Machine Learning. The expectation was to make a 

model that could detect if the picture is of Holy Mary or not based on certain key regions like her 

clothes.  

 

 

 

 

Section 1.3: Thesis Outline 
 

After introducing the topic of this thesis in Section 1, Section 2 focuses on Related Work and 

researches done in this field. Afterwards, Section 3 is discussing Methods used, meaning models that 

this thesis used, their architectures and performances. Section 4 then writes about Implementations 

to the training experiments as well as their Results. Section 5, then concludes this thesis. 
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Section 2: Related Works 
 

There are numerous ways to connect an artwork to its meaning. The eras and audiences for whom it 

was designed may influence the artwork. Therefore, Iconography can tell the variety of objects that 

comprise the represented picture, their personality and mutual connections, and inevitably their 

possible symbolic definition. It can also tell about artists influences on their arts. Therefore, 

iconography plays an essential part in historical paintings. For this, the iconographic argument 

constantly relies on accumulating historical data in relation to a particular artwork. 

The use of images to transmit religious beliefs and ideas, as well as to illustrate religious events, is 

known as religious iconography. Icons here can be little objects or part of regions in a religious 

artwork that expresses specific or symbolic significance. 

Some Examples of Religious Iconography [2], [3] are: 

1. The Virgin Mary is typically shown in a flowing blue garment/robe. Heaven and her 

spirituality is shown through this. In addition, her purity is symbolized by Lilies in a vase 

with a bowl or urn of water. 

2. The cross has been a religious symbol for Christianity since the second century. Crucifix 

which is a cross with Jesus on it, symbolizes Catholicism. 

3. The Holy Spirit is frequently depicted as a dove. This is based on the account of Christ's 

baptism, when the Holy Spirit descended like a dove from heaven. It may also be used to 

signify a person's soul. 

4. The fish emblem, which originates from the Greek term ichthus, is frequently used to 

symbolize Jesus Christ. The image of a lamb is occasionally used to represent Jesus and/or 

his love. This has to do with the fact that he is referred to as God's lamb. 

5. Religious figures such as gods, saints, prophets, and martyrs are sometimes memorialized in 

sculptures, which serve as icons for individuals who practice the faith with which they are 

linked. 

6. In religious iconography, divine creatures are frequently shown as human beings, but 

demons or evil spirits are depicted as threatening animals. 
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7. In religious iconography, images of books and tablets are used to represent God's message.  

8. In religious art, a halo, which is a circle of light encircling a figure or their head, is sometimes 

used to symbolize a holy person or saint. Flames, known as Mandorla in Asian religious art, 

are wrapped around the torso or head. 

9. Many churches feature stained glass windows that communicate stories about their beliefs 

through visual images. The Stations of the Cross are frequently shown in these windows in 

Catholic churches. 

With recent advent of Machine Learning and Computer Vision tools in particular, it is now possible 

to recognize objects in pictures and videos. However, in the past, historical artwork domain 

remained one of the field in which difficulties arise due to the availability of lesser data. This 

problem gets more aggravated due to presence of even lesser annotated datasets. Researchers in 

recent years now have at their disposition a wide range of pictures to evaluate the influences 

throughout artworks and authors. The most noticeable initiative here is the Iconclass system [4], 

which gives over 28k category types for ten top-level classifications of pictures and it is significantly 

used by art historians and collection managers. Another, widely used dataset is IconArt [5] and most 

recently, ArtDL [6] project has collected a substantial amount of data from various sources for 

researchers to apply Computer Vision techniques. They have also provided a neural network 

classifier trained on ImageNet and have use it for iconography of the saints present in ArtDL 

dataset. 

In recent years, many researchers like E. J. Crowley and A. Zisserman [7] , have applied Transfer 

Learning for implementing deep learning techniques on artworks such as paintings. 

Others like [8] have use time context to improve object detection in paintings for Iconography 

purposes. Some have detected people in artworks [9] and genre and style of artwork [10]. Gonthier 

et al. [11] used residual networks [12] on the image of Saint Sebastian and the Jesus. A similar 

concept of iconography using CNNs was also demonstrated by Madhu P. et.al in [13]. However, 

Federico Milani and Piero Fraternali [6] did one of the most tremendous work in this field. Not only 

had their dataset ArtDL, as mentioned in previous section, one of the best for Iconographic studies, 

but their comprehensive research also categorizes many of the research papers written with regard to 

this subject. Iconography in specific saints from Christian historic artwork was also done by [14] 

where they train a Convolutional Neural Network (CNN) on bodies of Mary and Gabriel. Another 
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work on iconographic analysis using Milani et.al dataset and with a different approach was done by 

Madsen n.d. [15]. Together with the [6] and [13] these two papers forms the basis of this thesis. 

Moreover, Class Activation Mapping [16] that suggests specific regions of image, which the model is 

predicting upon, was also attempted.  
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Section 3: Methods  
 

This section will give a theoretical background on the models used in this thesis. First, a brief 

background of object detection algorithms will be presented, Afterwards, working and architecture 

of Region based Convolutional Networks (RCNN) [17] family of object detectors will be discussed. 

Then, the Yolo Only Look Once (YOLO) [18] family of object detectors will be discussed. Finally, 

the method for explaining model results, Class Activation Mapping (CAM) will be presented. 

 

 

Section 3.1: Background 
 

Object detection algorithms are extremely powerful and may be applied across a wide range of 

applications. Now, it is a prominent topic in computer vision research, and it has been improving 

for years with the inclusion of new boosted techniques that enhance precision and speed. An image 

consists of a combination of objects and location. The process of detection is the identification of 

the object, whereas classification is the categorizing of the object based on previously determined 

classes. Object detection combines these two tasks [19]. 

With the advent of CNNs, a number of highly efficient architectures have been made in the domain 

of computer vision. Earliest architectures like DPM (Deformable Parts Model) were using a sliding 

window on the images that were input to them. Few years back, Region based CNN was developed 

and was an instant hit. They work by extracting probable regions. R-CNN employs an area 

proposition network. A classifier design is then used to categorize the extracted characteristics. Some 

issues in R-CNN's led to the creation of advanced R-CNN extensions known as Fast R-CNN and 

Faster R-CNN. Although they were an advancement on the previous mode, however still they were 

difficult and time-consuming to master since many aspects had to be learnt independently. The 

invention of YOLO (You Only Look Once) [18] corrected these flaws. In contrast to prior designs 

of object detection algorithms, YOLO merely looks at the image to comprehend where the item is 

as well as what class it belongs to. Because of its simple manner of detection, YOLO is extremely 

rapid; yet, it is less accurate than R-CNNs. The high frame rate of YOLO allows for live detection, 

with a base version operating at 45 frames per second and a somewhat faster version running at 
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roughly 150 frames per second, respectively. The YOLO architecture tackles the challenge of object 

identification using regression analysis. Different versions of YOLO have been developed, with the 

first being YOLOv1 and the latest being YOLOv5. 

 

 

Section 3.2: Deformable Parts Model 
 

The deformable components model separated a picture into a number of sections using a typical 

sliding window approach, which was then use as an input directly into a classifier [15]. The whole 

method is detailed in the activities mentioned below. 

1. To begin, a picture containing objects is given. 

2. The image is then separated into equall regions as shown in figure 1. 

3. Afterwards, each section is then treated as a distinct full picture. 

4. A convolutional neural net is then trained on all of the individual photos to classify them. 

5. Once all areas of objects have been assigned a class, whole picture with those objects is then 

set up using the divided images. 

 

While this strategy is easy, the model's learning process is complicated by the different positions of 

objects in the photos and the aspect ratios of objects. It is possible that certain objects can/will take 

up a large portion of the image while others will take up a little portion. Additionally, the activity 

requires a variety of objects of varying sizes and shapes. This would need the image to be segmented 

into a large number of sections, this would can make the process of learning and detection 

exceedingly sluggish and computationally intensive [20]. 
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Fig. 1: Image divided into many sub-images as a result of a sliding window [21] 

 

 

Section 3.3: R-CNN (Region based CNN) 
 

Ross Girshick and colleagues from the University of California, Berkeley released a paper titled 

"Rich feature hierarchies for accurate object detection and semantic segmentation" in 2014[21] Ross 

introduced a novel technique for object identification in this study, which was developed to 

overcome the limits of prior sliding window-based versions. This technique was dubbed R-CNN 

(Region-based CNN) due to the fact that it combined convolutional networks with a region 

proposal component. This method resulted in the first large-scale and practical implementations of 

deep learning-based object identification [22]. The model is divided into three major modules: 

1. Region Proposal: A method known as Selective Search is used to exclude 2000 regions. 

Additionally, these are called bounding boxes. 

2. Function Extractor: Those regions are then sent through a convolutional network to remove 

any remaining features. 

3. Classifier: They are categorized into one of the classes using linear SVM[22] 
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 Fig. 2: R-CNN model architecture [22]  

 

 

The complete procedure with R-CNN for detecting objects may be summarized as follows: 

1. As was the case with the preceding algorithms, a picture is used as the input. 

2. Selective Search approach is used for extracting interesting regions from that image. It 

focuses on the four components: textures, colours, scales, and enclosure. Selective 

Search makes note of trends in a picture and suggests areas of interest based on these. In 

all, the proposal network identifies 2000 regions of potential relevance. 

3. The area of interest is then warped and reshaped in accordance with the input of the 

convolution network. 

4. The subsequent phase deploys a convolutional network, AlexNet Deep CNN, and then a 

layer which is connected fully. CNN extracts features from potential regions of interest 

and then generates an element vector with a size of 4096. 

5. This vector is then classified by a SVM based on the objects according to their exclusive 

regions of interest.  

6. The same output vector is then used to construct bounding boxes for the regions of 

interest through linear regression. [21] 

This is a high-level summary of the CNN object identification technique using regions. Despite 

its effectiveness, the total detection procedure is incredibly time consuming due to the 

architecture's three models. The primary disadvantage of this architecture is the extraction of 
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2000 areas of interest, as it takes a significant amount of time to educate a convolutional network 

on 2000 regions and also to detect the items included inside them. As a result, the model may be 

unsuitable for use in real-world applications. [21] 

 

 

Section 3.4: Fast R-CNN (Fast Region based CNN)  
 

Fast R-CNN (Fast Region based CNN) were developed by same authors to minimise the limitations 

of the previous version [23]. This technique is identical to R-CNN, however it contains the first 

component is a pre-trained deep convolutional network instead of region proposal. This way the 

process becomes fast. The input picture is passed into a pre-trained CNN, and the generated maps 

are then used to identify regions of interest. This approach introduces in fact a pooling layer that is 

used to restructure the areas of interest captured by the fully connected layer [21] [23] 

The following steps outline the complete training process: 

1. The picture is sent into a pre-trained convolutional neural network to obtain the whole 

image's feature maps. 

2. Using the same Selective Search approach as in R-CNN, the recovered feature maps are then 

employed as regions of interest. 

3. Each extracted region is then sent through a Region of Interest pooling layer to reshape it to 

the precise size required for fully connected layer input. 

4. Then three fully connected layers are used for object detection. The second one is a Softmax 

to identify objects and another with a linear regressor to detect the coordinates of the 

bounding box. [21], [23] 
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Fig. 3: Fast R-CNN model architecture [21], [23]  

 

This is how Fast Region-based CNNs identify objects. Fast R-CNN is quicker in terms of training 

and detection since the CNN is trained once on the entire picture rather than on 2000 areas. 

However, even with being faster than normal R-CNNs, this Fast R-CNNs still was significantly 

slow, since it relied on Selective Search, and it is a time-consuming and slow-moving approach. Fast 

R-CNN reduces detection time to roughly 2 seconds, which is a significant improvement over R-

CNN [23]. 
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Section 3.4: Faster R-CNN (Faster Region based 

CNN)  
 

In 2016, Shaoqing Ren et al. published a study titled "Faster R-CNN: Towards Real-Time Object 

Detection using Region Proposal Networks." [24] This newer version of R-made adjustments to 

address the slowness of prior ones. Except for the region proposal network, the model architecture 

is quite similar to that of Fast R-CNN. Earlier versions relied on Selective Search for the proposal 

network, whereas the Faster R-CNN utilized Neural Networks for the area proposition network.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Faster R-CNN design [24] 

 

 

The substitution of a region proposal network for a Selective Search strategy resulted in a significant 

reduction in training time and also in training efficiency. The network design as a whole is composed 

of two primary components: the region proposal network (RPN) and the Fast R-CNN. [21] 
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The following actions outline the training of Faster R-CNN: 

1. As with Fast R-CNN, an image is fed into a convolutional neural network to extract the 

feature maps 

2. Afterwards, RPN generates regions based on the object's probability score and bounding 

box coordinates. The region proposal network selects an anchor point by the use of a sliding 

window on the image. Each window has k anchor points of varying shapes and sizes. The 

number of anchor boxes used is determined on the size and aspect ratio of the photos. The 

region proposal network is a convolutional neural network with a kernel diameter of 3x3, 

followed by two 1x1 convolutional layers for predicting the object's score and also the 

bounding boxes.[25] 

3. As seen in Figure 4, region suggestions are then passed via a ROI pooling layer to equalize 

the size of all proposals for the fully connected layer input. 

4. Following that, a Softmax layer predicts the object's class. Afterwards, a fully connected layer 

uses linear regression to predict the bounding boxes. 

 

 

 

Fig. 5: Region Proposal Network of Faster R-CNN [25] 
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RPN was successful in lowering the training time associated with the Selective Search technique. In 

addition, the feature of RPN to interface with any type of item identification makes it a particularly 

valuable network. The faster R-CNN approach was likewise a region-based detection technique, 

scanning for objects in various areas of the picture one by one. The overall model was designed in 

such a way that multiple modules were ran one by one, implying that the performance of the 

following module can change due to the output of the preceding module. These problems were 

covered in Faster R-CNN. It is one of the most advance and fastest algorithm in all of the R-CNN 

versions. In terms of object detection speed and accuracy, the algorithm achieved on the best 

performance in current times [21], [24]. 

 

 

Section 3.5: YOLO (You Only Look Once) 
 

The methodologies described above made the task of object detection in two stages. To resolve the 

problem, the first step was to identify the areas of interest in the provided picture, and the second 

step was to categorize those regions of interest into the appropriate classes. Despite the 

improvements, this whole procedure was still too sluggish for real-time object identification 

applications. Because of this constraint, Joseph Redmon and colleagues developed a unified one-

stage approach in 2016, which they named YOLO (You Only Look Once) [18]. YOLO means that 

you only look at the image once, rather than looking at several portions of the image to find the 

item. When a picture is taken in its entirety, the YOLO model uses a single neural network to 

predict item classes as well as bounding boxes in real time. In contrast to earlier algorithms, YOLO 

approached the identification of objects as a regression challenge, rather than as a classification 

problem that required the employment of a classifier. As a result, using this approach, the model 

could be trained incredibly quickly, and real-time pictures could be processed at 45 frames per 

second with the basic design [18]. 

YOLO was made in Darknet, which is a framework for deep learning developed in the C and Cuda 

programming languages. Even with the fact that it is very quick, YOLO has a much superior mean 

area under the curve (mAP) than various object identification methods, including Deformable Parts 

Model and also R-CNN. When compared to other cutting-edge algorithms, YOLO produces more 
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bounding box inaccuracies, although it is very uncommon to identify any objects when there are 

none. It also has excellent generalization capabilities [18]. 

YOLO's training technique is uncomplicated. To begin, the characteristics of a picture are utilized as 

input to the model, which is then refined. Following that, the model divides the whole picture into a 

S x S grid, where S may be any value between 1 and 100. Detecting the item whose centre falls inside 

each grid cell in the picture is the responsibility of each grid cell in the image. A vector including is 

predicted for each grid cell in the grid. This vector contains confidence score, bounding box, and 

class likelihoods for each grid cell.  

Five values are assigned to each bounding box: the confidence, the elevation, the width, and the 

height. The confidence score indicates how certain the model is that a specific bounding box 

contains one or more items. The overlap between predicted and ground truth bounding boxes, is 

used to calculate the confidence score and this statistic is called the IOU (Intersection over union). 

When the training starts, grid cells containing object centers receive confidence scores of 1, with the 

rest of the values in the vector remaining unchanged. Other grid cells with no objects in them, as 

well as a vector of zeros, have a confidence score of zero. The value of C will be 10 for a dataset that 

has 10 classes as objects. There is can only be one class in the grid cell vector, regardless of how 

many bounding boxes are selected [18]. 

 

 

Fig. 6: YOLO model prediction [18] 
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Section 3.5.1: Design  
 

Figure 7 depicts the model design described in the original paper presented, which has a total of 26 

layers in its entirety. The design has twenty-four convolution layers in start which are utilized for 

extraction, while two fully connected layers are used to forecasting are located in last for the output 

vectors. Apart from the fact that 1 x 1 layers followed by 3 x 3 convolution layers are used in lieu of 

inception modules, the architecture is quite similar to that of GoogLeNet. The smaller-sized form of 

YOLO contained nine convolution layers, as opposed to the basic model's 24 layers, with the rest of 

the parameters being the same as they were before. On ImageNet dataset with 1000 classes over 

almost a week, the very first 20 convolution layers were pre-trained, with a conventional pooling 

layer in the middle and a totally linked layer at the end. A predictive accuracy of 88 percent was 

attained by the pre-trained network on the validation set. In the preliminary training, a photograph 

with a resolution of 248 by 248 pixels was used as an input. Concatenation of 20 pre-trained 

convolution layers was used for detection, which included 4 convolution layers and also 2 fully 

connected layers with variable weights, all of which were concatenated at the conclusion of the 20 

convolution layers. Additionally, the image size was raised from 248 × 248 to 448 x 448. The output 

layer makes use of a linear activation function and generates an output consisting of a bounding box 

coordinates, confidence score, and class probabilities, among other things. In addition to the 

coordinates, height and size of the bounding boxes are normalized. With the exception of the last 

layer, the leaky relu activation function is utilized for all layers. A total squared error in the outcome 

is used to optimize the model, which is readily optimized due to its simple design. The difficulty with 

the sum of squared mistakes, on the other hand, is that it gives the same significance to both the 

bounding box and the classification errors. Furthermore, for grid cells that do not include any 

objects, confidence scores trend in the direction of zeros, which has the effect of subduing grid cells 

that do contain items. In order to solve this, the loss feature was modified to penalize bounding box 

predictions more severely, as well as confidence scores for bounding boxes without objects being 

penalized considerably less severely. Aside from that, the sum of squared errors gives equal weights 

to errors for both big and small bounding box boundaries. This is in advance calculated by square 

rooting the bounding box elevation as well as the width forecast. YOLO predicts the same number 

of bounding boxes for each cell in the grid as it does for the previous cell. Throughout the training 

process, one bounding box predictor is assigned to the task of predicting the object, and this 

predictor has a much better present intersection than the union with the ground truth box. This 
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assists bounding box predictors in becoming more accurate in their predictions of diverse spatial 

objects [18] 

Fig. 7: YOLO model architecture [18]  

 

 

Section 3.5.2: Training  
 

The image was divided into a grid of seven by seven pixels on the paper. The paper selected two 

bounding boxes B which predicted two bounding boxes as well as a single set of class probabilities. 

A further consideration is that the model was trained using the PASCAL VOC dataset, which has 20 

discrete classes, hence the class probabilities C were set to 20. Each grid cell anticipates a 30-value 

vector, two 5-value bounding boxes, and a total of 20 class probabilities. Regularization and 

augmentation were used to avoid overfitting on training images in order to prevent overfitting. 

Translation and random scaling were applied to the original photographs in order to enhance them. 

The centers of items in an image may lie near many cells, causing YOLO to project multiple 

bounding boxes for a single item when the centers of objects in a picture are near multiple cells. In 

order to reduce repeated detections, the method of non-maximal suppression is used. A single 

object's overlapped bounding boxes are detected using the IOU threshold, which is used in this case. 

It is decided which boundary box to use if numerous bounding boxes with a greater IOU limit 

overlap [18]. The bounding box with the greatest confidence score is chosen in this case. 
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Section 3.5.3: Limitations 
 

When it comes to object prediction, one of the major limitations of YOLO is that it can only 

anticipate one thing per grid cell. This inhibits the model from recognizing objects with centers in 

the same grid cell that are near to each other. As a consequence, the model has difficulty 

distinguishing between small elements in the image that look close to one another. Given that 

YOLO derives the box coordinates from the object's properties, it has difficulty detecting objects 

with unusual aspect ratios. Some of the most important properties in training are also lost because of 

the several down-sampling layers used in the model's construction. For the purpose of computing 

weights errors, YOLO treats both large and small bounding boxes in the same way. This is a 

concern because small box errors are significantly more expensive in terms of IOU than big box 

errors. Small box errors are therefore more difficult to detect [18] 

 

 

 

 

 

 

 

 

 

Fig. 8: YOLO comparison with other detectors on VOC [18] 
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Section 3.5.4: Performance 
 

YOLO performed better than all other real-time detection algorithms, with a mean absolute 

performance (mAP) of 63.4 and an inference time of 45 fps (frames per second). Fast and Faster R-

CNN, on the other hand, were more accurate than YOLO for non-live detections with a time of 

fewer than 10 frames per second [13]. 

  

 

 

Section 3.6: YOLOv2 
 

After releasing YOLOv2, which featured architectural improvements to eliminate the initial work 

limitations, the same authors published YOLOv3 in 2017 [26]. When it came to pre-training, 

YOLOV2 used a bespoke darknet-19 architecture, which consisted of nineteen convolution layers 

and five max pooling layers between them. Later, for object identification, six layers were 

concatenated at the end of the design, resulting in a 30-layer architecture for YOLOv2. It was 

proposed in YOLOv2 to leverage the concept of anchor boxes, which had previously been used in 

Faster R-CNN, to assist the users in identifying small objects that occurred in groups of users. 

Instead of the completely connected layer utilized by YOLO to anticipate the outcome, YOLOv2 

relies on support boxes to create the final result. It predicts up to B bounding boxes for each grid 

cell by using B anchor boxes, and for each bounding box, a set of class probabilities is generated, 

enabling the model to predict up to B objects for each grid cell. A significant difference between 

YOLOv2 and the previously mentioned Faster R-CNN is that it applies k means clustering on 

training photos to locate anchor boxes with improved prior fit. Because the image size has been 

reduced significantly at the time of production, YOLOv2 originally had difficulty detecting little 

objects in an image at first. As a result, it was difficult for the model to preserve fine-grained traits as 

more and more layers were added. When it came to dealing with this, the model made use of a 

method known as identity mapping was used. It was an outstanding upgrade to the YOLOv2 model, 

enabling it to better converge and generalize as a result of batch normalization. For the purpose of 
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eliminating dropout layers and reducing overfitting, batch normalization was performed after all 

convolution layers [26]. 

To begin the training, the darknet-19 model was trained for 160 epochs using the ImageNet 

classification dataset with an input image size of 248 by 248 pixels. The optimizer employed 

Stochastic Gradient Descent (SGD) having a learning rate of 0.1, and was implemented in Python. 

Cropping, zooming, rotating, changing the exposure and other augmentation procedures were also 

used throughout the training process to enhance the images. The same model was fine-tuned for 

classification with image size of 448 by 448. The last convolution layer was six convolution layers 

with random weights for object identification, and the size of the input image was 416 x 416 pixels. 

Three 3 × 3 convolution layers were utilized, followed by three 1 x 1 convolution layers, with the 

number of filters varied based on the length of each grid cell's vector. The number of filters 

employed in the last three 1 x 1 convolution layers varied based on the length of the vector for each 

grid cell. Using Pascal VOC with 20 classes as the assessment dataset, the outcome of the model 

architecture reduces the original 416-pixel image to 13 x 13 pixels. Using 5 Anchor boxes, the 

number of bounding boxes B was determined to be 5. Each box had five values, including 

coordinates and a confidence score, and was designated as B. As a consequence, each grid cell has a 

vector of length 125. A result of this was that each of the one-by-one convolution layers had 125 

filters, and the final output of the model was thirteen by thirteen by 125 pixels. The VOC dataset 

was used to train the model over a period of 160 epochs. It was determined that the learning rate 

should be 0.001, and that the momentum and weight decay should be set to 0.9 and 0.0005, 

respectively, during the first 60 epochs. It took 60 to 90 epochs for the learning rate to reach 0.0001, 

and it took 90 to 160 epochs for the learning rate to reach 0.00001. During training, the same 

augmentation methods that were used in YOLOv2 were used. The results were similar. 

YOLOv2 was lightning quick showing a 45 frames per second inference time and accuracy that was 

state-of-the-art at the time. While algorithms such as SSD and RetinaNet surpassed YOLOv2 in 

terms of mean absolute performance (mAP), this was not the case a few years later. YOLOv2 lacked 

critical skills detecting smaller objects was not very good [26] 
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Fig. 9: YOLOv2 comparison with other detectors on VOC [26] 

 

 

Section 3.6.1: Performance 
 

 With a detection period of 40 frames per second, YOLOv2 had the highest mAP of 78.6 out of all 

detectors on PASCAL VOC, outperforming all others. YOLOv2 using a 288 by 288 input image 

was the fastest, with a frame rate of 91 frames per second and a mean acquisition time of 69 

milliseconds[26] 
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Section 3.7: YOLOv3  
 

The YOLOv3 model, which was a newer edition of the YOLO verisons [27]. It was built in 2018 by 

Joseph Redmon and his co-workers. The approach was created to increase accuracy while remaining 

as quick as feasible without sacrificing speed. [28]. When YOLOv3 was pre-training on the 

ImageNet 1000 class dataset, it used an original 53 layer network from Darknet, which was built 

from the ground up. After that, the network was enlarged by 53 layers to accommodate the object 

detection task, giving YOLOv3 a total of 106 layers in total. However, despite the fact that 

YOLOv3 is slower than YOLOv2, it still processes photographs at a rate of 30 frames per second 

due to its intricate and vast design.[27] 

 

 

Fig. 10: YOLOv3 model architecture 
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Moving further into the network, YOLOv3 used upsampling layers in the network architecture to 

ensure that the required features were maintained. One of the most significant improvements to the 

YOLOv3 was that in could detect three different sizes of objects, as seen in figure 8. As YOLOv2, a 

1 x 1 layer of convolution is used to construct the final result, along with a number of filters that are 

dependent on the parameters and dataset. There are three 1 x 1 convolution layers applied to three 

different sized feature maps, which are applied at three separate places in the network to detect at 

three different scales. The YOLOv3 model was evaluated on the COCO dataset, which had 80 

classes, in the research that was proposed [27], [29] 

The picture size is reduced by factors of 32, 16, and 8. It is possible to identify large objects using 

the output of size 13 by 13, medium objects using the output of size 26 by 26, and tiny objects using 

the output of size 52 by 52. In addition to the three anchor boxes on each scale, a total of nine 

anchor boxes were used. K means is used to generate anchor boxes by clustering with and then 

arranging them in descending order of importance. The largest of those three anchor boxes are used 

in the 13 x 13 grid, the next three are used in the 26 x 26 grid, and the smallest three are used in the 

52 × 52 grid [22], [23]. 

Cross entropy, error is utilized instead of the sum of squared error that was used in previous 

versions of YOLOv3. To anticipate each box's confidence score and set of class probabilities, 

YOLOv3 used logistic regression activation rather than Softmax, as opposed to the Softmax 

method. As a consequence, it was possible to forecast many classes for a single item based on the 

class likelihood score [22], [23]. 
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Section 3.7.1: Performance 
 

In a comparison to other state-of-the-art detectors at the time, such as RetinaNet, YOLOV3 

achieved a mean absolute performance (mAP) equivalent to that of those other detectors, but with 

an inference time of just 22ms, which was much faster than other detectors. Yolov3 had the greatest 

mean absolute probability (mAP) of 57.9, and it had an input network size of 608 x 608 pixels. [27] 

 

 

Fig. 11: YOLOv3 comparison with other detectors on COCO 
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Section 3.8: YOLOv4 
 

In his study published in 2020, Alexey Buchkovskiy proposed the term "YOLOv4" [30]. Most 

algorithms used prior to YOLOv4 needed bigger batches of data for training, which was a difficult 

process to do with a single GPU. YOLOV4 is an object detection technique that uses just a single 

GPU for training and only little batches of data. 

Yolov4 is incredibly quick and has incorporated certain universal features as Mish activation, Mosaic 

augmentation, cross stage partial connections, CIoU loss, and other similar characteristics to achieve 

high precision. The YOLOv4 model architecture is comprised of three major components: 

1. Backbone: Object detection tasks are fine-tuned using the backbone model, which has been 

pre-trained on datasets such as ImageNet. Because of this, the feature maps obtained in 

these pre-trained models are very valuable in later layers of the network, which are employed 

for object detection. There are a variety of YOLOv4 backbone models available. Some of 

these backbones do better at classification while others are good for object detection task. 

For example, CSPDarknet53 is more better for object detection tasks. It is necessary to have 

a larger size input for the backbone model in order to be able to train the tiny object 

detection more effectively [30] 

2. Neck: Second, the neck portion of the model is made up of layers that are located in the 

midst of both backbone and head networks. Neck performs the function of a feature 

extractor, extracting features from various areas of the backbone network. YOLOv4 also 

uses Spatial Pyramid Pooling (SPP) to expand the receptive field. It enhances the 

performance by increasing the receptive field. YOLOv4 employs a modified PAN that 

concatenates data rather than adding it all together. PAN employs two approaches: bottom-

up and top-down[30] 

3. Head: YOLOv3 and YOLOv4 both architectures have same head, except that anchor boxes 

are employed for purpose of detection, at three distinct scales instead of only one. Using 

varied scales may aid in the detection of objects of varying sizes. [30] 
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In addition, two approaches, Bag of freebies (BOF) and Bag of specials (BOS), are included in 

YOLOv4 in order to increase the effectiveness of the YOLOv4 object detector. With various 

characteristics, a bag of freebies was created to aid in the advancement of model training. One of the 

features of BOF is data augmentation, which allows the model to generalize more effectively on 

previously unknown data. The use of various image augmentation methods, such as rotation and 

saturation changes as well as hue changes, is common, and the same techniques are used to create 

bounding boxes. New augmentation strategies, such as cut-off and random erasing, have also been 

shown to increase the performance of convolution networks. Regularization strategies other than 

dropout include DropBlock and DropConnect, both of which have shown to be quite effective in 

avoiding overfitting on training data. DropBlock is used to maintain regularity in the YOLOv4 

backbone network. YOLOv4 has BOF also has a characteristic of CIOU. It calculates the loss of 

bounding box in terms of the distance between the centre points of the ground and the predicted, 

the aspect ratios of the ground and predicted, and the overlap between the ground and predicted. 

The CIoU aids in the improvement of accuracy and convergence of the model. Bags of Specials 

incorporates inference-related elements that help to enhance overall performance. Among the BOS 

networks that are used to increase the receptive field and improve feature learning are the SPP, RFB, 

and ASPP. A modified variation of the Spatial Attention Module is also used by YOLOv4 to build 

an improved feature map, which is another aspect of the program. In addition, YOLOv4 makes use 

of a Mish activation function to increase test accuracy. [30] 

Another feature that is the Mosaic augmentation, is also included as a characteristic that is utilized in 

YOLOv4, which is a video that blends four photos into a single frame and uses mosaic 

augmentation to do this. This assists the model in selecting small batch sizes and expedites the 

training process. The Self-Adversarial Training feature is divided into two levels. Instead of using a 

filter in the first step, the network refreshes the picture data. Second, the model is trained on the 

new changed picture in order to recognize objects in the third step. [30] 
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Section 3.8.1: Performance 
 

On the COCO dataset, YOLOv4 achieved an AP and AP50 of roughly 44 and 66, respectively, 

which was on par with other state-of-the-art detectors (SOTA), with an inference time of more than 

30 fps, which was much quicker than other detectors. [30] 

 

Fig. 12: YOLOv4 comparison with other detectors on COCO [30] 
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Section 3.9: YOLOv5 
 

YOLOv5 is the most recent version of Glenn Jocher's YOLO family of models, having been 

released just two months after the previous edition, YOLOv4. If we look at the model's architecture, 

YOLOv5 is similar to YOLOv4 in that it uses the same backbone, neck, and head as the previous 

model. Yolov5 is implemented in Pytorch [31] rather than the Darknet framework, which is more 

efficient. In contrast to previous versions, YOLOv5 makes use of the a.yaml [32] configuration file 

for configuration. It has number of different versions, which include the YOLOv5s, YOLOv5l, 

YOLOv5m, YOLOv5n, and YOLOv5x, which are all different models. In terms of size, the 

smallest YOLOv5 model is the YOLOv5s [25], while the largest is the YOLOv5x [33] 

 

 

 

 

 

 

 

 

Fig. 13: YOLOv5 versions comparison  
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Section 3.9.1: Performance 
 

On the COCO dataset, YOLOv5x was able to get an AP that was very near to that of the SOTA 

EfficentDet, and with a time of less than ten milliseconds. The YOLOv5x algorithm, on the other 

hand, has an AP of over 50 on COCO and a 8ms inference time [33]. 

 

 

Fig. 14: YOLOv5 comparison with other detectors on COCO [33] 
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Section 3.10: Class Activation Maps 
 

A side effect that occurs is the loss of inference transparency because of the large number of 

parameters in a neural network. Because it is impossible to determine the grounds for a decision 

taken by a neural network, it is difficult to determine whether the prediction was correct or the 

network is inferring incorrectly on the wrong foundation. As an example, if a model has been 

created and trained on pictures of Jesus Christ. Most of the times, Jesus is represented as crucified in 

paintings.  In this situation, the model may activate only based on the crucifixion, rather than 

because of Jesus. This raises the question of whether the model is capable of recognizing Jesus even 

if he is not in the image of the crucifixion. Class activation mapping (CAM) [16] is a technique, 

which produces heatmaps on the basis of inferential grounds to aid in such cases.  The heat maps 

may be used in combination with the input image as an overlay to provide additional information of 

where the model concentrates for its prediction. So in essence, it is a   visualization of input 

regions, that can be understood by humans, which display the model prediction on the images. 
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Section 4: Implementation And 

Evaluation 
 

The current section relates to experimental setup and the parameters related to dataset and its 

processing as well as the models used for training and inference. A high-level summary of the data is 

first given. Secondly, a discussion of data pre-processing will be provided. Afterwards, the 

implementation setup of the models will be discussed. Lastly, results of both of the models’ 

predictions will be discussed at the end of this section along with CAMs. 

 

 

 

Section 4.1: Data 
 

Milani et al. published the ArtDL paintings data set, which was used in this thesis as a subset [6]. It 

includes 42.479 paintings representing Christian Saints which were taken from IconClass [4]. The 

bulk of the images were made during Europe's Renaissance. Murals, frescoes and canvas 

paintings are among the many different art styles and materials present in the data collection. The 

paintings are approximately 60% in color and 40% in grayscale. The 10 saints in this dataset  are: 

Virgin Mary, Anthony of Padua, Saint Dominic, Francis of Assisi, Saint Jerome, John the 

Baptist, Paul the Apostle, Saint Peter, Saint Sebastian and Mary Magdalene. Each picture has 

at least one representation of one of these saints, although it may contains many saints. If a picture 

portrays a number of saints, just one saint is selected to serve as the annotation for the artwork. The 

annotations by Milani et. al are labels that indicate the presence of a certain saint in the picture. 

 

The dataset contained most number of both colored and grayscale images of Saint Mary at about 

19,399 [6] and iconographic analysis on her paintings is possible due to some key features that most 

of her paintings and her other artworks contains. As, discussed in Sec 2 about iconography of 
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Christian religion, some of the most notable features of Virgin Mary’s iconography [2][3] in the 

ArtDL dataset were found to be: 

 

1. Robe that Holy Mary is wearing. The dataset contained huge amount of paintings of hers 

with various possibilities of colors of her robes and dresses:  

a. Blue robe with red dress underneath 

b. All blue robe and dress 

c. Red robe with blue dress underneath 

d. All red robe and dress 

e. Shade of blue could range from very light almost whitish blue to dark or even 

blackish-blue  

f. Apart these, there were a minority paintings of Holy Mary with dresses in 

different colors like Golden and White.   

 

 

 

Fig. 15: Sample images from the ArtDL dataset [6] 
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2. A Holo or circle on or over the head of Holy Mary is also found in almost all of the 

images indicating divine nature of her being. The Holo could either be filled or un-

filled, above or behind the head as shown in first and third images in top row and 

middle image in second row of figure 14. 

3. Another interesting key point that was observed was Virgin Mary’s scarf. Mostly, it 

was white with shades ranging from transparent to fully opaque white. At times, it 

could also be the part of the red robe that covered her body as shown in first image 

from right in the top row in figure 14. 

4. Lastly, Holy Mary, most of the times is shown together with Baby Jesus.  

All four of these features were considered in this thesis to perform iconographic predictions upon 

and they were annotated using bounding box annotations on Roboflow website. As, the robe (both 

blue and red colors), scarf and the baby Jesus were all mostly together spatially, so one bounding 

box was made for these three features. However, Holo were separately annotated whenever they 

occurred visibly enough in the portraits as sometimes holos were very weakly drawn with just a faint 

non-continuous line.  

From about 10,000 colored portraits of the Saint Mary’s dataset, 1000 images were taken for the 

work of this thesis. After their annotations, they were then preprocessed and augmented as 

discussed in the next section. 
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Section 4.2: Pre-processing 
 

Recently, many computer vision solutions have sprung up providing developers with various useful 

applications in this field. Roboflow [34] is one such solution, which provides, among other options, 

to load your custom dataset, check its heath, do annotations and preform various preprocessing and 

augmentation steps and export it in commonly used formats like Tensorflow TFRecord [35] and 

YOLO Pytorch [36]. This saves important time when making and experimenting with a computer 

vision model and make the process a bit more straightforward.  

1. In first step, all the images were split into train, validation and test sets, a generally 

accepted way of choosing these sets are 80% for training and 10% for each of the 

validation and test sets. Therefore, The selected 1000 images were split into following 

sets: 

 

 Train set:   840 images 

 Validation set:   100 images 

 Test set :  100 images 

 

2. Secondly, they were then resized to 640x640, as resizing an image is necessary for 

conforming it to the dimensions of a neural network's input layer. However, the model 

we will be using also does this itself. Resizing to a lower size also decreases processing 

costs and training time. 

3. Finally, Auto-Adjust Contrast was used for boosting the contrast. It does so on the 

image's histogram which also improves normalization and line detection in different 

lighting conditions. As we were dealing with images with some low contrast images and 

there were segments of images with saturated contrast, so flattening the contrast of the 

image using preprocessing is a recommended step. Also, edges become clearer as 

neighboring pixel differences are exaggerated [37] 

 

Augmentation is used to create an altered training data based on existing examples. This results in 

improved model performance, especially on small datasets [38]. Therefore, after the initial pre-
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processing step, five types of augmentations steps were also done on the dataset right from the 

Roboflow’s working environment: 

1.  Hue: Between -25° and + 25° 

This augmentation technique is used to randomly alters the colour channels of an input 

image. This causes a model to consider more colour schemes for all the objects and 

scenes in input images. As mentioned earlier in this section, that images of Saint Mary 

had varying degrees of blue and red shades, so applying just a small 25 ° Hue 

augmentation will surely help the model in learning those differing shades better.  

 

2.  Saturation: Between - 25% and + 25% 

Saturation augmentation technique is closely similar to applying hue except that it 

changes the vibrancy of the image. Therefore, changing and adjusting the saturation of 

an image can increase your model performance better as portraits made by different 

paintings of Holy Mary could differ in white-balance and different light settings. 

 

3.  Brightness: Between - 25% and + 25% 

It Increases the variability of picture brightness in order to make your model more 

tolerant to variations in lighting and camera settings. 

 

4.  Exposure: Between - 25% and + 25% 

It also Increases the variability of picture brightness in order to make your model more 

tolerant to variations in lighting and camera settings. 

 

5.  Noise: Up to 5% of the pixels 

Noise is the purposeful alteration of pixels in such a way that they seem to be different 

from what they should have represented. It is done by randomly changing certain pixels 

to entirely white or completely black. Researchers have considered that the implementing 

blurring and noise had the most adverse effect on top-1 and top-5 accuracy classification 

[39], [40]. 
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The images before and after pre-processing and augmentations are shown in below 

figure. Please note for the sake of this display, sizes and aspect ratios of the original (first 

row) images had to be altered. The output images (second row) after these initial steps, 

all had same size as mentioned earlier. 

 

   

Fig. 16: Images of Holy Mary from the ArtDL dataset [6] before and after pre-processing and augmentation 

steps 

 

After these steps, the dataset was exported from Roboflow’s workbench. There are two ways to 

export the dataset from Roboflow. First is to download the dataset in the required format, i.e. 

Tensorflow TFRecord, JSON COCO etc. Second way is to get the download code and use it 

directly into your Jupyter notebook or Terminal via Roboflow pip package.  
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Section 4.3: Implementation Setup  
 

For running experimental setups, two different object detection models were selected, YOLOv5 [33] 

and Faster R-CNN [24]. Both of them are State-Of-The-Art models and their backgrounds, 

architectures, evolutions and performances had been discussed in section 3, with Faster R-CNN and 

YOLOv5, being discussed in sections 3.4 and 3.9 respectively.   

The setup for implementation of models was on Google Colab [41]. The GPU assigned was Tesla 

P100 with 16GB of Memory and RAM assigned was of 32GB. All the code was in Python [42]. 

 

 

 

Section 4.3.1: Training with YOLOv5 
 

YOLOv5 model [43] is currently one of the most famous and widely used object detection 

algorithms. This leads to a wide range of learning resources in the every form available [44]. Out of 

which, Ultralytics’s documentation [45] is the best as they were the original developers of this 

version of the model.     

Some major requirements that needs to be installed after cloning the Ultralytics’s YOLOv5 

repository are: 

 Python>=3.7.0 

 PyTorch>=1.7 

 CUDA/CUDNN 

 torch>=1.7.0 

 torchvision>=0.8.1 

 pandas>=1.1.4 

 scikit-learn==0.19.2   

 tensorflow>=2.4.1   
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All of the requirements were easily installed using a requirement text file. Afterwards, Dataset from 

Roboflow [34] was imported and incorporated into specific train, valid and test folders in Colab by 

using their python package. The next step was to prepare the dataset yaml [44] file in order for 

YOLOv5 to be able to access the data. Now comes the part to select which YOLOv5 version needs 

to be ran. YOLOv5 has five versions namely, YOLOv5n, YOLOv5s, YOLOv5l, YOLOv5m, and 

YOLOv5x  with each having a different model architecture. Pre-trained weights [46] for each model 

are accessible in Ultralytics’s repository's weights folder. Out of these versions, YOLOv5s and 

YOLOv5x were selected and trained for this thesis.   

YOLOv5s and YOLOv5x both predict three anchor boxes per grid cell at three distinct scales to 

identify objects of varying sizes. The model was initially ran for 150 epochs. This resulted in an 

overfit model. Analyzing the train and validation loss function graphs, it was obvious that model 

started to overfit just after 25 epochs due to size of data being small and advance model architecture 

of YOLOv5.  Moreover, Transfer Learning was done by using pre-trained Yolov5 weights exported 

from the YOLOv5 authors’ repository [46]. In this experiment, the batch size was selected to be 32 

as to be a trade-off between fast and efficient performance of the mode. Other main settings that 

were utilized for the hyperparameters were: 

 Initial learning rate lr0=0.01 

 Final learning rate lrf=0.01 

 Momentum=0.937 

 Weight_decay=0.0005 

 

From all of the YOLOv5 versions, the smaller (YOLOv5s) and the largest one (YOLOv5x) were 

selected. The results of comparison of both is listed in Appendix A. Here, results of only the one 

version, i.e.YOLOv5s is discussed. 
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Section 4.3.2: YOLOv5s Results 
 

Below is a summary of YOLOv5s, the smaller version that was trained for 25 epochs.  

 

 

Fig.17 Summary of the trained YOLO v5s showing Precision, Recall,  

mAP@0.5 and mAP@0.5:0.95 

 

 

Figure 17 shows most of the basic yet important parameters for YOLOv5s. The model took only 8 

minutes to train. Even with such low time to train, the model showed promising results with 

Precision for 97.9% for class Mary and 71.3% for Holo class. Such difference in both precisions 

could be answered by the fact that Mary class was trained on a bigger region as compared to Holo 

class whose region was not only small but also considerably varied too like filled, un-filled on head, 

above head etc. This is also shown by Recall metric where recall is again comparatively lower for 

Holo class. Both mAP1 metrics showed good results for both classes with total mAP for 0.5 being 

91.5% 

 

 

 

 

                                                           
1 The mAP calculates a score by comparing the ground-truth bounding box to the detected box. The higher the 
score, the better the model's detection accuracy. It is stated over different IoU (intersection over Union) 
thresholds, from 0.5 to 0.95. mAP@0.5 means ground-truth and predicted box shares 50% of area. 
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Moving to metrics plots, figure 18 shows plots for YOLOv5s on our dataset. Considering the top 

two plot of mAP, there is a steady rise with mAP@0.5 and then the difference is not considerable 

after 15th epoch. However, we see that mAP for 0.5:0.95 continues to rise. Nevertheless, we cannot 

let the model train further because of the overfitting that occurs after about 25 epochs (see more 

about it in Appendix A) 

 

 

Fig.18 Plots of the mAP, precision and recall for the trained Yolo v5s 
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Considering train and validation losses in figure 19, we see the steady decrease in train and validation 

losses for box, classification and objectness losses. Both train and validation losses decreasing 

together means that the model is not overfitting and from our initial run for 150 epochs, we know 

that training the model further will result in overfitting and an increase in validation losses and 

hence, resulting in bad inference (see more about it in Appendix A) 

 

 

Fig.19 Plots of the metrics for the trained YOLO v5s comparing train vs validation losses  
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Finally, we have the inference images as shown in below fig.20. These images were obtained by 

using YOLO v5s best weights. After the model is trained on images from the training set, the 

model’s best weights are saved and using that YOLOv5 was required to draw the bounding boxes 

on the test set that the model has not seen. 

 

Fig.20 Inferenced images from the trained YOLO v5s  

 

An interesting remark that the model was unable to predict Saint Mary in third row middle picture as 

clearly there is not much red or blue dress shown. However, model was able to predict her in the 

left-most picture of the same third row even though the image did contained many other people. 
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Section 4.3.3: YOLOv5 CAM Results 
 

Class Activation Mapping is generally being done on Image Classification tasks and not object 

detection tasks [51]. The output of object detection algorithms are generally in a form of dictionaries 

of bounding boxes, labels and scores. They then do an argmax on scores to find the highest scoring 

category. Therefore, to get a thermal heatmaps like CAM is not straight forward with them. The 

code needs to be dived into and altered to get specific outputs from specific layers. For the case of 

YOLO v5, some very recent experiments were done and included in a repository [48]. There are 

some issues found when ran on different setups and can require many changes in original code and 

dependencies to work [48]. This code when used on this thesis dataset, did show some heatmaps. 

However, the resulting maps are not perfect and cannot be taken into consideration when evaluating 

YOLO model’s results as will be shown in below figures. 

 

 

 

 

 

 

 

 

 

 

 

Fig.21.1 CAM from three different layers on an image. Original image is top left 

 

Although, the images shown in figure 21.1 is of a single original image (top left) with other images 

being output of different layers of YOLOv5. This CAM result is relatively discernable as activations 

shown in top right and below right images are concentrated on Holo and blue dress of Holy Mary. 

However, the heatmap shown on below right image in fig. 21.1 is disperse and not pointing to 

specific regions of the image. It is also to be noted that this image is one out of many images where 
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the CAM results are somewhat understandable relative to the objects the model detected. In almost 

all other images that were tested, CAM results were clearly not accurate (please see fig. 21.2) as the 

heatmaps were drawn on almost whole area of the image in regards to how it should solely be 

focusing on specific regions only. 

Below are two more sample images with their respective CAMs, which explains why the CAM 

implementation on YOLOv5 was not achieved properly. The CAMs results are wrong as it shows 

that they are focusing on various random parts of the image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.21.2 Original images and CAM results on them. The CAM has focused (denoted with red) on 

random parts of these images  
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Section 4.4: Training With Faster R-CNN 
 

Faster R-CNN was also implemented using Python using Google Colab. In this case, TensorFlow 

API [49] was used to get the implemented object detection models directly from Tensorflow Model 

Garden. It is an open source framework built on top of TensorFlow that makes it easy to construct, 

train and deploy object detection model. Apart from this, model framework was of Keras [50].  

As TensorFlow’s Object Detection API was used here, there was no need to install dependencies 

separately. After configuring pipeline, we are ready to select feature extractor model. For that, in 

Faster R-CNN, mobile net was utilized because of its faster performance   

All of the configurations for hyperparameters etc. were configured using a config. file. Afterwards, 

Dataset from Roboflow [34] was imported in TF Records format [49] because format is used for 

Tensorflow object detection models. After that, the dataset was incorporated into specific train, 

valid and test folders in Colab by using their python package. As a base feature extractor, 

ssd_mobilenet_v1[51] was used. Main reason of using Google’s MobileNets was there high speed 

[52], which it achieves by using Depth-Wise Separable Convolutions [51]. The basic 

hyperparameters configurations were altered as to compare them to YOLOv5 model. Again, 

Transfer Learning was done by using pre-trained MobileNet weight exported from the TensorFlow 

repository. The weights were trained on COCO dataset [53]. Generally, Faster R-CNNs have better 

accuracies on various datasets than YOLO models [52], [54]. 

As there is a parameter for step size in Faster R-CNN implementation instead of epochs, a 

calculation was done to determine the number of step size equivalent to 25 epochs. This calculation 

gave a number of 781 as step size which equates to 25 epochs on the given dataset of 1000 and 

batch size of 32 [55], [56] 

 

 

 
 

 



46 
 

Section 4.4.1: Faster R-CNN Training Results 
 

 The model used Google’s MobileNet [51] as a feature extractor. Figure 22 shows Faster R-CNN’s 

metrics of classification loss, localization loss and Total loss graphs. Please note that the model was 

trained for 781 steps as mentioned earlier.  

Fig.22 Plots of Loss functions of Faster R-CNN 

 

One observation was that the Faster R-CNN showed a Total loss of about 4.7%. Legacy issues- like 

the model only storing values for losses, shown in fig. 22 - prevented a direct comparison between 

Faster-R-CNN and YOLOv5. However, total time train for FRCNN was a bit higher at 9.5 minutes 

to YOLO’s 8 minutes. The inferred images, which were almost same as for YOLO inferences 

images are also shown below in fig. 23: 
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Section 4.5: Discussion 
 

Quantitative results are shown in previous sections for both models YOLO and Faster-RCNN. 

Both Holo and Mary classes are balanced with 105 and 98 labels respectively and could be trained 

without any issue in this regard. The two object detection models (YOLOv5 and Faster R-CNN) 

chosen for this thesis were because of their high accuracies and fast results. The training models 

were initially ran for 150 epochs (see the appendix) resulting in overfitted data because of total 

annotated images being 1000 only. However, with this result, it was possible to see epochs, after 

which the model would start to overfit. In this case, it was after 25 epochs after validation loss for 

objects will start to rise with training loss still decreasing. Therefore, new training was done with 25 

epochs. Considering figure 17 which summaries YOLO model’s training results, it is observed that 

precision as well as mAP for Holo class is less than that of Mary class, although Holo had higher 

number of labels. A reason for that could be smaller size of the annotated region of Holo as 

compare to annotated region of Mary, which is many times higher. Moreover, another reason it 

seems is that often times, Holos on head of Holy Mary where not prominent and have changing 

styles; from an unfilled/filled circle, on head vs above head. This is confirmed by the lower recall 

Holo class has. 

In section 4.3.4, CAM results from YOLOv5 output images are presented. Images for fig. 21.1 were 

the result of CAMs being overlaid on a single image. The output is showing three different layers of 

the YOLOv5 model but of a same one image. It is clear from this image that although the CAM is 

focusing on her head area for Holo detection and her body area for blue/red robe, CAM is also 

considering other regions of the image as well. This phenomenon is more clear in next image, fig. 

21.2. Being an object detection algorithm, not very resources are present for implementing CAM on 

objection detection problems. Therefore, CAMs on inferred images were not promising and many 

times the map was shown all over the image instead of just focusing on specific objects in the image 

on which the detection was performed. 
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Section 5: Conclusion 
 

This thesis presented an experiment to do an iconographic analysis on the images of Holy Mary by 

using object detection models like YOLOv5 and Faster R-CNNs. These machine learning models 

were trained on specific region of interests like Holy Mary’s clothing and were able to detect these 

region with good results. Afterwards, Class Activation Mapping (CAM) technique was used on the 

inferred images to get the discriminative regions of images from the model’s predictions. However, 

the CAM implementation could not be done successfully because of the form of output data of 

object detection models. 
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Appendix A: Results of 

comparison between YOLOv5s 

and YOLOv5x 
 

 

Initially both YOLOv5x and YOLOv5x were trained for 150 epochs, which resulted that the model 

started to overfit after 25 epochs. Thus, for accuracy and inference, in sec. 4.1, the model YOLOv5s 

is trained only for 25 epochs at batch size of 32. 

Below Fig. no. 24 shows a brief summary of YOLOv5s and YOLOv5x models that were trained for 

150 epochs. Even with a considerable smaller size, YOLOv5s performs almost at par with 

YOLOv5x for mAP@0.5. However, when it comes to mAP@0.5:0.95, the bigger YOLOv5x shows 

considerable improvement in results for both classes. Moreover, the computational time used by 

both models differed considerably too with smaller version taking only 31 minutes to train, while 

biggest version (YOLOv5x) took almost 6 hours and 54 minutes. Moreover, considering Precision 

and Recall, these metric were definitely better when it comes to YOLOv5x and especially precision 

for Holo class which was just 66% with the smaller YOLOv5s but 80% with YOLOv5x 

 

 

 

Fig.24 Summary of YOLOv5s (1st image) and YOLOv5x (1ns image) models showing Precision, 

Recall,  

mAP@0.5 and mAP@0.5:0.95 
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Fig.25 Plots of the metrics for the trained YOLO v5s 

 

Fig. 24 shows plots for YOLOv5s trained for 150 epochs. Considering second plot from left on 

both upper and lower row, it can be seen that val/obj_loss, which is the loss of objectness, starts to 

rise after about 25 epochs. At the same time, train/obj_loss continues to decrease showing that the 

model has started to overfit the data. Therefore, there was no reason to train the model beyond 25 

epoch 

Considering the two plots of mAP (lower row, first and second from right), it is also noted that the 

model had almost converge after about 25 epochs. After that, the mAP almost remained same 

especially for IoU 0.5  
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